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half-order Struve function

normalized plate moment of inertia,= B8

identity matrix

modified Bessel function of the first kind

positive square root of -1
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LIST OF SYMBOLS (Continued)
Bessel function of the first kind
nondimensional acoustic wavenumber,= wR/C
Zﬂ/z

nondimensional effective structural wavenumber,-[£2+n
modified Bessel function of the second kind

nondimensional differential operator matrix for the Flugge
cylindrical shell equations with elements L,
Equation (2.12) 13

denotes the longitudinal branch of a fluid-loaded cylin-
drical shell in the complex &-plane

denotes the extensions of the real flexural branch of a
fluid-loaded cylindrical shell into the complex &-plane at

frequencies below the lower cutoff frequency and above the
upper cutoff frequency

integer circumferential mode order number
components of ﬁij defined by Equation (2.21)

nondimensional modal differential operator matrix for the
Flugge cylindrical shell equations with elements M,
Equation (2.16) i3’

nondimensional modal spectral operator matrix for_the
Flugge cylindrical shell equations with elements M M.,
Equation (2.21) J

nondimensional spectral fluid reaction matrix,
Equation (4.14)

integer circumferential mode order number

maximum mode order number at which real singularities
exist for a fluid-loaded cylindrical shell, Equation (4.28)

modal truncation value of the Fourier series associated
with the branch integral contributions Bln’BZn’z va+l0,
see Figures 5.2 and 5.9

normalized shell stiffness component, Equation (3.23b)
acoustic pressure field in the fluid

acoustic loading on the cylindrical shell,= p(r=a,®,x,t)

reference pressure,= Fr/(ZnR)2
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LIST OF SYMBOLS (Continued)

a

xS

”

g=1,2,3 indice associated with the branch nomenclature of a
cylindrical shell in vacuo

qn(a) modal kernel of the integral of Equation (5.30) '

'"":’."‘-‘ o

Q(r,8,8) kernel of the integral of Equation (5.16)

-
"

Qn(E) modal coefficients of Q(r,8,%) and modal kernel of
Equation (5.10) associated with BZn(r,x)

r,8,x nondimensional cylindrical coordinates where both r and x
have been normalized by R

LRy s
P ]

fa”

modal contribution of a real singularity to res(8,x),

£, (%)
equation (5.33) \

}z res(o,x) total residue contribution of real singularities to
w(8,x), Equation (5.32)

middle~surface radius of the cylindrical shell; also, in
Chapter 5 designates path of integration along the real
axial wavenumber axis, see Figure 5.1

Rn(r,x) modal contribution of a real singularity to Res(r,8,x),
Equation (5.25)

) Res(6,x) total residue contribution of real singularities to
p(r,8,x), Equation (5.24)

Q S, jth coefficient of the characteristic equation for a
'n J cylindrical shell in vacuo, Equation (3.5) (

S normalized plate shear deformation factor,= 24I/n2(1—u)

time

t

nondimensional axial, circumferential, and radial dis-

u,v,w(e,x,t)
placement of the shell’s middle surface (normalized by R)

nondimensional orthogonal displacement components at any
point within the cylindrical shell (normalized by R)

5

& u u
8 r' uG' X
K>

Un,vn,wn(x) modal coefficients of the Fourier expansion of u,v, and w

w nondimensional reference displacement,= Preg/P

'y ref
[X)

nondimensional spectral displacement matrix

- -

I Xsn(E) normalized spectral modal reactance of the shell,
! Equation (3.22)

Yn(z) Bessel function of the second kind
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LIST OF SYMBOLS (Continued)

v g
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)
N
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'

i ‘:t
o

¢

vy
e
zan(y) normalized spectral modal acoustic radiation impedance, "'
Equation (4.11) :
'
zfn(yr) spectral modal specific acoustic impedance, Equation (4.10) o::
4
an(E,) shell spectral modal mechanical impedance, Equation (3.22) .‘::
. AN
8 normalized thickness-to-radius ratio,= h2/12 &
A
Y=Yr+jyi nondimensional radial wavenumber (normalized by R), ""‘:
Equation (4.6) (}_ﬂ-
- . o
Y magnitude of y, used where phase has been explicitly shown £
®
o general point in the first quadrant of the complex y-plane ‘i;;
. i
T. designates the jth portion of the integration path along ',‘é!;
] the branch line, see Figure 5.1 bt
wth
&8(2) Dirac delta function,= 1 for z=0 and zero otherwise S
.’(
8nm Kronecker delta function,= 1 for n=m and zero otherwise ;}r
]
A coefficient,= p2%/p.h, Equation (4.15) o
N
€0 Neumann factor,= 1 for n=0 and 2 for n>0
€ ex' %06’ S strain components in the cylindrical shell, Equation (2.3) ‘
€ox'€xr'tre " ‘:
Kex’ Koo’ curvature changes of the cylindrical shell’s middle ::::
Ko’ Kox surface, Equation (2.9) '
A eigenvalue 2
>‘n qt‘h eigenvalue of a cylindrical shell in vacuo at circum- {.\'
q ferential mode order number n o,
[
)‘rc1 lower cutoff eigenvalue for the qth branch of a cylindri- _
q cal shell in vacuo at circumferential mode order number n . ‘j
[A) nondimensional spectral characteristic matrix "
V]
7 Poisson’s ratio of shell material 200
L J
E’E'r*'jai nondimensional axial wavenumber (normalized by R) "‘
‘R
£, denotes a point in the jth quadrant on the top Riemann (,\
] sheet of the complex &-plane IS
by,
P fluid mass density; Chapter 2 only, nondimensional radial ":
component measured from R such that r=l+p TR
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LIST OF SYMBOLS (Continued)

mass density of shell material

s

9ex’ %00’ “ox cylindrical shell stress components, Equation (2.10)

e coincidence angle,= sin~! JQC/Q

Y principal angle of Equation (4.39) used to calculate Nrax

w circular frequency

We classical plate cocincidence frequency

wring ring frequency of a cylindrical membrane shell,= cp/R

Q normalized frequency,= “VuEing

Q. normalized plate coincidence frequency,= 6_1/2(c/cp)2

Q normalized frequency at which n is attained,

max Equation (4.40) max

2, qth natural frequency of a cylindrical shell in vacuo at
‘9 circumferential mode order number n.

Qg lower cutoff frequency of the qth branch of a cylindrical
q shell in vacuo at circumferential mode order number n

Qg lower cutoff frequency of a fluid-loaded cylindrical shell

at circumferential mode order number n
Qﬁ upper cutoff frequency of a fluid-loaded cylindrical shell
at circumferential mode order number n
V2 Laplace operator
vg normalized Laplace operator,= R2v?
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Chapter 1

INTRODUCTION

1.1 Statement of the Problem

In this investigation the acoustic nearfield of a cylindrical
shell of infinite axial extent will be examined. Fluid loading is con-
sidered external to the shell while the shell interior remains unloaded
except for the application of a time harmonic point force acting in the
radial direction. The behavior of the acoustic nearfield is of partic-
ular importance in the characterization of the self-noise of a sonar
array attached to such a structure. The acoustical and structural
behavior of this simple geometry can provide insight into the mechanisms
by which energy is transported and the parameters that control these
mechanisms. By use of Green's function techniques these results could
be extended to include any type of distributed mechanical loading or

non-harmonic excitation.’

1.2 Historical Background

Gaseous loading usually has a negligible effect upon the dynamic
response of a structure. Notable exceptions occur when the ambient
medium is confined by rigid boundaries or when a nearly lossless struc-
ture is excited at one of its resonances. In contrast, the surface
force exerted by a dense medium such as water is often comparable to the
inertial and damping forces found in a metal structure undergoing
dynamic motion. Fluid loading alters the structural response, thus

creating a feedback loop that couples the elastic and acoustic media.
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An early description of the behavior of acoustic radiation loading was f
given by Stokes (1868) where he discussed the transition from low to B
high frequency. As discussed by Crighton and Innes (1984), fluid load- ‘§
ing is a non-local mechanism. Any attempt to locally deform a structure '§
can lead to a slowly decaying pressure field that acts to excite the N
structure further away. The interaction between the ambient fluid and . :
the structure has been a topic of considerable interest within the Tield ,é
of underwater acoustics from the time of Rayleigh. ’ ‘é

During the past two decades considerable progress has been made

in understanding how the ambient medium and the structure interact §
dynamically. This has been due to both the heightened interest in the $
subject among the Naval community and to the availability of high speed 5
digital computers and efficient fast Fourier transform (FFT) algorithms. ﬁ
Researchers have commonly used four different methods to solve problems .&
in which the fluid and structure are coupled. These are often called j?
integral methods, the finite element method (FEM), the addition of a E
fluid virtual mass, and normal mode methods. Junger (1975) has present- ‘#
ed an excellent historical review of techniques for solving radiation b
and scattering problems of submerged elastic structures. The particular {ﬁ

approach chosen is often due to the geometry of the problem, the fre-
quency regime of interest, the length scale of the structure, the type
of results desired, computational considerations, or the personal pref-
erence of the investigator.

Integral methods formulate the desired results in terms of an

integral equation. The complexity associated with solving the differen- }:
.t

tial equation of motion of the system and its boundary conditions is Eé

replaced by the difficulty in performing a complicated integration. The :
o

integral contains information about the equation of motion, the boundary »
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conditions, and other dynamic specifications such as the behavior of the
solution at large distances. For this reason, it is possible to derive
general properties of the solution without an exact knowledge of its
form. Usually asymptotic techniques are used to provide a solution in
the farfield or high frequency limit. Numerical integration is often
employed at intermediate ranges or frequencies. Integral transform
techniques are a classical example of an integral method. Another exam-
ple would be the use of the Helmholtz integral approach.

The finite element method (FEM) is a wholly numerical method that
requires a digital computer. The FEM regards a system as a finite
assemblage of discrete elastic elements where each element represents a
continuous structure. Elements connect to their neighbors at discrete
points, called nodes, at which the displacement and internal forces are
required to be in balance. 1In this manner, complex systems with irregu-
lar geometries can be modeled as the sum of a large number of simple
systems. The resultant governing equation of motion of the system and
its boundary conditions are represented by matrix equations. The prob-
lem is characterized by a sequence of matrix manipulations. The power
of the FEM lies with the complexity of the systems that can be analyzed.
Unlike other methods, no requirement exists that boundaries represent
constant coordinate surfaces. Perhaps the greatest disadvantage of the
FEM is the long computer time required and the labor necessary in pre-
paring the input data that characterizes the system. For acoustical
problems, the FEM has been handicapped by difficulties in properly ter-
minating the fluid model to represent energy propagating into the far-
field. Recent advances have partially overcome this problem. Due to

numerical considerations, the FEM remains essentially a low frequency

method.

WV v




Rt 1Y et it Bat 547 6.0 8a° Ba® 0 4. v ga®otad gt [ “
K (K 1" 3% 0pY F®afad bgt i S80% 0a% $2°2 009 $2% 0% 8a% 02" du' pat, '298" Bu* fa* * tav gy A aa’ aU SRt oM ke Bet Ga et et Sab et $28 ge¥ §20 ga¥ 4ot

-

r
i
¢
1
3
L

>

4

W
The virtual, effective, or equivalent mass method is an approxi- :a'

mate method that attempts to characterize the fluid radiation loading f
upon a structure as an added mass (or impedance) term in the equation of ;é
motion. The concept of a virtual mass is used to quantify the fluid ,5
loading and therefore dynamically decouple the fluid and structure. :&
Other methods would then be used to solve the problem. This is a lumped v
parameter approach that is generally accurate only for limiting values gz
of some parameter like frequency. The difficulty is in accurately EE'
approximating the fluid impedance. Although the virtual mass is a prop- ’;’
erty of the medium, it also depends upon the shape and volume of the éﬁ
vibrating structu;e. Pérhaps the earliest example of the use of this kg
method is Rayleigh’s (1945) formulation in 1878 of the equation of ;1
motion of a piston in a rigid baffle that is radiating into an acoustic ?&
fluid. The piston is mounted on a spring. Rayleigh constructed an 'E§
equivalent single degree of freedom system vibrating in vacuo that con- i;
tained a larger mass and damping to account for the fluid. jﬁ
An approxiﬁation that has recently gained some popularity is the \
doubly asymptotic approximation (DAA), as discussed by Geers (1978) and 3‘
Geers and Felippa (1983). The DAA is asymptotically exact for both the gk;
low frequency, incompressible, inertial impedance and the high frequen- ;5
cy, resistive, plane wave impedance. It effects a smooth transition in ;%
the intermediate frequency range. The DAA may also be expressed as a 25
matrix of ordinary differential equations for application in discrete éﬂ
element analysis of complex structures. The method is also known as the ~
matched asymptotic expansion, as described by Pierucci (1979). Accord- f,
ing to Junger (1984), the DAA does not correctly account for impedance Ef
curves that diverge or display a peak around the coincidence frequency. 5-
;;
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The normal mode (or eigenfunction) method expresses the parameter ;

T
of interest, such as the dynamic motion of the structure, in terms of a :f}
series expansion of the eigenfunctions of the system. The eigenfunc- !Ef
tions represent solutions of the differential equations of motion for ;E,
which the boundary conditions are satisfied. Slow convergence behavior '
of these series solutions often limit the practical application of the o
normal mode method. This method is suited for uniform or spatially %;t
periodic excitation that corresponds to discrete wavenumber spectra. A ﬁgz
point force applied to a sphere or a line force exciting a cylinder are in
examples. Problems such as infinite plates or cylinders excited by a gﬁ
point force result in continuous wavenumber spectra and are therefore gﬁ
more compatible with inteqral transform methods. Q;[
This investigation employs integral transform methods to reduce E?-

the governing differential equations of motion to a set of algebraic Eit
equations in wavenumber space. Eigenfunction analysis is used to ;'.
express the acoustic pressure in cylindrical coordinates in terms of a Sf
Fourier series of modal pressures over the discrete circumferential S}‘
wavenumber spectra. For the acoustic nearfield, this spectra is shown i
to be finite, Each modal pressure is represented by an inverse Fourier {:
integral over all of the real axial wavenumbers. The integrand is 5§§
expressible in terms of both a spectral modal specific acoustic imped- ;¥
ance that relates the radial surface velocity to the acoustic pressure S;
and in terms of a spectral modal mechanical impedance of the shell Sﬁ
vibrating in vacuo. Cauchy’s theorem and integral formula are used to 3:
solve the integrals. The acoustic nearfield is represented as a residue E:
contribution to the integral. ﬁi
A recent report by Vogel and Feit (1980) also looks at the prob- &;
lem of a point-excited cylindrical shell immersed in a fluid. Although g
2
:
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Ky the formulation was similar, they chose to solve the integrals numeri-
ot cally. However, Vogel and Feit are primarily interested in describing
Q? the vibrational response of the cylinder and do not calculate the acous-
t

3,

5? tic nearfield. Much of their analysis deals with the driving point

o3

R

A admittance (or velocity). A limited amount of velocity data around the
P, cylinder circumference or along the cylinder axis is shown. Comparisons
s' are made with a point-excited plate both with and without fluid loading.
vy

o Vogel and Feit show that the greatest difference between the velocity

response of a point-excited plate and cylinder occurs at low frequency

and in the vicinity of the cylinder’s ring frequency.

f5 Liu and Tucker (1984a) have also investigated this problem. The

F. formulation was again similar, and like Vogel and Feit, they also solve

S the integrals by numerical integration. Since Liu and Tucker were pri-

h; marily interested in characterizing the power flow, they were only in- .
A terested in the gross details of the fluid and structure dynamics. They ‘
f‘ decomposed the input power into a power radiated into the farfield and a

; "lost" power. This lost power was represented by energy propagating :
B both down the elastic shell and in the acoustic nearfield. No detailed ‘
'E investigation of the acoustic nearfield was performed. The effect of

f structural damping upon the power flow into the acoustic farfield was

'; investigated. They concluded that below the classical plate coincidence

: frequency radiated power is insensitive to an increase in structural

: damping. Above this frequency, the addition of structural damping only !
< moderately reduces the radiated power. Comparisons were also made be- “
’. tween the point-driven cylinder and both the line-driven plate and ring-

& driven cylinder. In a subsequent report, Liu and Tucker (1984b) inves-

;f tigated the effect the addition of a massless, compliant layer would

a have upon the radiated power. Two resonance frequencies are induced by X
\ ,
" )
y .
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the addition of the layer. One defines an amplification region of radi-
ation reduction (negative reduction) and the other defines a region with
a low structural vibration level. In this second region the structural

damping is enhanced by coating dissipation.

Asymptotic techniques are often used to solve the inverse trans-
form integral. The farfield of the point-excited cylindrical shell has
been studied by both Bleich (1954) and Junger and Feit (1972) using the _
method of steepest descents. A physical interpretation of this tech-
nique is that the pressure at a given point in the farfield is predomi-
nately associated with the structural wavenumber that matches the trace
of the acoustic wavenumber on the radiating surface. High frequency
asymptotic analysis of cylindrical shells has been primarily concerned
with acoustic scattering using the Sommerfeld-Watson formulation. This
method transforms the slowly converging Fourier series into an integral
expression that is in turn expressible as a residue summation that
rapidly converges. Reference is made to Horton et al. (1962), Doolittle
and Uberall (1968), Junger and Feit (1972), Ugincius and Uberall (1968),
and Uberall et al. (1977) as examples of this creeping wave solution.
Since the infinite cylinder can be approximated by an infinite plate at

) high frequency, Feit'’s (1966, 1970) work would also be of interest.

Several simplifying approximations have reen used by researchers
in order to avoid solving the inverse transform integrals. One such
assumption is to consider the exciting force to be independent of the
coordinate that defines the axial direction of the cylinder. Effective-
ly the degrees of freedom of the problem are reduced by one. This leads
to a plane or two-dimensional problem commonly referred to as the line-

excited problem. Examples are Junger (1952a, 1952b) and Junger and Feit
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(1972). The acoustic field solution is expressed as an infinite summa-
tion over the circumferential modes.

Another assumption is that the excitation force is periodic with
a specified axial wavelength. The solution is therefore applicable only
for the wavelength chosen while, in reality, all wavelengths are permis-
sible for a point-excited, infinite cylinder. Bleich and Baron (1954)
and Barcn and Bleich (1954) use this technique in their classic discus-
sion and prediction of the natural frequencies and modes of an infinite
cvlindrical shell immersed in a fluid. They use the in vacuo modes as
generalized coordinatass in the formulation of the fluid-loaded velocity
response of the shell. Kalciikhina (1278) also assumed periodic excita-
v.on, tut restricted the analysis to tie axisymmetric mode in his inves-
tigation cf the farfield acoustic radiation.

If the infinitely long cylindrical shell contains rigid, periodic
rib stiffeners, the inverse transform integral is reduced to a summa-
tion. This technique was used by Junger (1953, 1954) for both the radi-
ation and scattering problem. However, if the ribs have a finite imp. .-
ance, the regions between ribs can couple mechanically and the inverse
transform integral formulation must be retained. Burroughs (1984)
investigated the case of a doubly periodic set of elastic ring supports.
The integrals were solved for the farfield by the method of steepest
descents.

The true finite cylindrical shell problem can only be handled by
surface integral techniques. Examples of the method are Cohen and
Schwiekert (1963), Chertock (1964), Schenck (1968), and Copley (1968).
Sandman (1976) investigated the fluid radiation loading due to a gener-
alized velocity distribution on a finite cylinder with rigid end caps.

Sandman’s work represents a solution of the Helmholtz integral equation
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by use of a Green’s function. In this formulation, the discrete fluid
loading matrix is often referred to as the influence coefficients.

By extending the finite shell with semi-infinite, rigid, cylin-
drical baffles, the problem becomes analytically tractable using eigean-
function techniques. Stephanishen (1978, 1982) used a combined Green'’s
function and Fourier integral method to investigate the radiation load-
ing and radiated power from a finite cylinder with a non-uniform veloci-
ty distribution. 1In the first of these papers, the general'formulation
is for the infinitely long elastic cylinder, however the cases evaluated
all have a nonzeroc velocity distribution of finite length. In the sec-
ond of these papers, Stephanishen expands the velocity field in terms of
the in vacuo modes of the finite elastic shell. A similar technique was
also used by Harari and Sandman (1976) in a study of the vibratory
response of a three-layered cylindrical shell. Smith (1959) used lumped
parameter assumptions to solve the finite cylinder with rigid ribs prob-
lem in terms of matrix equations in a manner that is somewhat analogous
to the later development of the finite element method.

The introduction of FFT methods has been a powerful tool in the
solution of radiation problems. The FFT algorithm has a tremendous com-
putational advantage over other numerical integration schemes because of
its speed. Recent papers by Stephanishen and Benjamin (1982) and by
Williams and Maynard (1982) are an excellent discussion of the method
using planar surfaces as examples. A subsequent paper by Stephanishen
and Chen (1984) treats the infinite cylinder problem by FFT methods. The
numerical examples presented are for a finite cylinder in an infinite
baffle. The excitation is periodic in the axial direction. This work

is particularly interesting because acoustic nearfield results are
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presented. Below the coincidence frequency, edge effects due to the
finite length of the cylindrical shell are shown to predominate.

Many of the methods for solving fluid-loaded cylinder problems
and much of the insight into the dymamic interaction between the fluid
and structure have come from investigations of the fluid-loaded plate
problem. The structure has been idealized as a membrane, thin plate, or

thick elastic plate. The velocity response and acoustic fields gener-

. ated by point or line forces or moments have been studied. Like the

cylindrical shell results, the plate results are usually confined to the
farfield or to the drive-point behavior because they are quantities of
physical interest and there are efficient analytical techniques to
handle them. Although a complete historical description of these inves-
tigations would be too lengthy for our purpose, it would be appropriate
to briefly mention some of the more pertinent contributions.

One of the earliest investigations of the power radiated from a
point-excited elastic plate was given by Skudrzyk (1958). The farfield
radiated pressure was investigated by Gutin (1965), Skudrzyk (1968), and

:1t (1970). An analysis of the radiated power due to a concentrated
romer.- was given by Thompson and Rattaya (1964). Maidanik and Kerwin
(1966) and Maidanik (1966) investigated the influence of fluid loading
upon the radiation from an elastic plate. All of these investigations
used classical thin plate theory. However, it is known that classical
plate theory fails at high frequency where it predicts infinite flexural
phase and gqroup velocities. For this reason many investigators have
used the more complicated Timoshenko-Mindlin plate theory because it
includes the effects of shear deformation and rotary inertia that are
important at high frequency. Timoshenko-Mindlin plate theory correctly

predicts that the flexural phase and group velocities approach the
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&
Rayleigh limit at high frequency. A similar dichotomy exists with shell ;;
theory between so-called thin and thick shell theory. However, since 2”
the cylindrical shell can be approximated by a plate above the plate e@
coincidence frequency, the choice of thin or thick shell theory is not kg
as important below the plate coincidence frequency unless the shell s&
thickness-to-radius ratio is greater than one-tenth. Both Feit (1966) %:
and Stuart (1972) investigated the radiated pressure field from a point- ég
excited plate using Timoshenko-Mindlin plate theory. ;ﬁ
Crighton (1977) has studied the driving point admittance of a :*
point-excited elastic plate and concluded that at low frequency the ég
admittance acts as a stiffness. This is in contrast to the line-excited %g
plate where Crighton (1972) has shown that the admittance is mass-like N
at low frequency. Both Smith (1978) and Junger (1978) have offered fxé
physical explanations for this difference. Other recent work has been : %
concerned with the modes and resonances of the fluid-loaded plate. An Pe
excellent example of the role scaling parameters and asymptotic analysis ag
has played in these investigations is given in two papers by Crighton §$
and Innes (1983, 1984) and one by Maidanik (1966). A discussion of the %
physical significance of the leaky waves has included investigations by s
Stuart (1976a, 1976b), Strawderman et al. (1979), and Crighton (1979). ux
Pierucci and Graham (1979) and Pierucci (1981) have studied the free »
bending waves in thick plates. t,
N
)
1.3 Organization of the Investigation e
A discussion of shell theory and the development of the Flugge N
equations is presented in Chapter 2. The differences and limitations ﬁx
between exact and approximate theories as well as between thin and thick -:
)

shell theory are discussed. The relationship to plate theory is pre-

sented. Important concepts such as dispersion, phase velocity, and
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group velocity are introduced. The geometry and coordinate system for !

|

% the problem is defined and a normalization with respect to the shell’s

% middle~surface radius of all length and wavenumber parameters is intro- ‘
é duced. The Flugge equations are developed for a general applied radial 5
ﬁv force and acoustic loading. Details of the development using variation- X
% al principles are presented in the Appendix. The governing set of three .

g partial differential equations are reduced to a set of algebraic equa- :
'3 tions by expanding the shell deformations in a Fourier series over the

N circumferential coordinate and by applying an integral transform of the ’
;\ axial coordinate. The chapter ends by expressing the shell displace- {
; ments in terms of a series of modal displacements, each represented by é
b an inverse Fourier integral.

ii Chapter 3 discusses the shell vibrating in the absence of fluid %
-g loading. The canonical form of the shell equations are used to develop X
; eigenfunction solutions known as branches that represent frequency spec- :
§ tra. An asymptotic analysis at large wavenumber is performed in order

‘f to specify a branch nomenclature. The concept of a cutoff frequency is :
. introduced and the behavior of the branches in its vicinity is investi- ’
% gated on a modal basis. Frequency spectra, dispersion curves, and group ;
g velocity predictions are presented. The effect of varying the shell’'s

3 thickness is discussed. A comparison is made between the Flugge shell

; theory and a theory developed by Gazis (1959) based on the exact three- )
%9 dimensional equations of motion. The comparison indicates that Flugge )
! theory is adequate at frequencies below the classical plate coincidence :
{ frequency. Forced motion of the shell is considered and developed in a X
i form convenient for later work when fluid loading is included. A modal E
? mechanical impedance in the transform domain is introduced that repre- f

sents the total contribution of the shell to the fluid-loaded problem.
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The vibration of a shell in the presence of an external fluid is '2«'
discussed in Chapter 4. Boundary conditions at the shell-fluid inter- ,;:,
face and at infinity are used to specify a spectral modal specific ‘:.
acoustic impedance that modifies the in vacuo integral representations 0:::‘!?
of the radial displacement and acoustic pressure. These boundary condi~ E:::E
tions introduce a radial wavenumber that is a multi-valued function of %)
the axial wavenumber. Both physical and mathematical reasons are intro- E:.g
duced to favor the use of f.he Sommerfeld branch lines to force a single- a;
valued behavior of the radial wavenumber in the domain of interest. The
behavior of the normalized spectral modal acoustic radiation impedance E:‘;::;
is presented over the entire radial wavenumber domain. Existence prop- ':i':‘:.:
erties of the singularities are developed and the location and behavior :;
of both the real and complex singularities are investigated. Comparison ::':‘
is made with the in vacuo modes of free vibration. For each circumfer- .::?:
ential mode order number, fluid loading is found to require both a lower "‘
and an upper cutoff frequency which define a frequency bandwidth of free ‘
mode propagation. As circumferential mode order increases, the associ- - éﬁ
ated bandwidth decreases such that above a critical mode order no free %
propagation is possible. ::"g
Chapter 5 discusses the solution by Cauchy’s theorem and integral 'x; ‘
formula of both the shell’s radial displacement and the acoustic radia- At
tion field for a point-excited cylindrical shell immersed in a fluid .:
medium. Numerical examples are presented in the acoustic nearfield ;:c\
defined as a<r<2a and 0<x<l0a. The radial displacement of the shell and Cx
the acoustic pressure loading on the shell are presented. A summary of :
the problem and conclusions drawn from the study are presented in .: ‘
Chapter 6. ‘:
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Chapter 2

SHELL THEORY

2.1 Introduction

Shell theory is a diverse field which has been the continuing
subject of many textbooks and hundreds of papers. This thesis has an
interest in shell theory primarily as a displacement boundary surface
for an acoustic field. 1In order to place the shell theory chosen for
this study in perspective, the initial discussion will deal with the
general types and characteristics of shell theories. Specific reference
is made to Timoshenko (1940), Flugge (1973), Leissa (1969 and 1973), and
Graff (1975) for background material, and to Graff, Greenspon (1960),
Frymoyer (1967), and Walter (1979) for historical discussion. The gen-
eral discussion will be followed by a development of the Flugge shell

equations and their solution using integral transform techniques.

2.2 Exact and Approximate Theories

The so-called "exact" shell theories are based upon a three-
dimensional analysis for an elastic continuum in which mass, momentum,
moment of momentum, and energy are conserved. The usual approximations
are based upon assumptions that the strains are small, a linear rela-
tionship exists between stress and strain, and terms associated with
higher-order ratios of shell thickness to mean radius can be ignored.
Often a homogenecus, isotropic material is assumed. Both the linearized

elastic theory and the boundary conditions which result from such an

analysis are complex and difficult to use. Reference is made to the
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l:':
‘ work of Gazis (1959) as an example of an exact shell theory. In addi- ;}
’ tion to the elastic assumptions discussed above, an exact theory can Qﬁ
also account for material anisotropy, piezoelectric effects, thermal ;;
effects, viscoelastic effects, plasticity effects, nonlinear effects, Eyz
and fluids. As might be expected, for all but the £fluid case, the ég
resulting equations would be much more complicated than those for the ) s%
linear elastic, homogeneous, isotropic material situation. i%
Approximate shell theories are usually based upon a strength-of- - ::
materials approach where assumptions have been made about the material zw
deformations that approximate the detailed behavior of a solid. Approx- é&
imate shell theories are usually characterized as membrane, bending, and sﬁ
higher-order theories. Additiocnally, both membrane and bending theories '1u
are generally referred to as thin shell theories, while the higher-order »3
theories are known as thick shell theories. Thin shell theories use the :ﬁ
three displacement components of the shell’s middle surface as degrees f:
of freedom. Consequently, thin shell theories have a third-order stiff- ;:
ness matrix and a characteristic equation which yields three roots. .a
Thick shell theories usually allow for two additional degrees of freedom E‘
by including two rotations of the normal to the shell’s middle surface. S?
Consequently, a more complex fifth-order stiffness matrix results, and &;
the characteristic equation yields five roots. This is contrasted with r'
the exact theory which has an infinite number of roots. The increased i?
complexity of both exact theory and thick shell theory is such that, ﬁm
when applicable, the thin shell approximation is both analytically and ifﬂ
computationally advantageous. The zero-order Flugge shell equations v,
used in this wock are an example of a bending theory and represent the i;:
thin shell form of the Mirsky-Herrmann (1956~59) higher-order theory : X

which contains both rotary inertia and shear deformation effects. P

:
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Classical flat membrane theory is the two-dimensional analog of
the string. Restoring forces arise from in-plane tensile forces, and
there is no resistance to shear and bending forces. In membrane shell
theory, only normal and shear forces acting in the mid-surface of the
shell are considered. Transverse shear forces and bending moments are
considered to be negligibly small. The shell is thus assumed to behave
as a curved membrane. Membrane theory is often adequate for relatively
uniformly distributed, applied radial loading. In regions in which
larger loading gradients exist, such as in the vicinity of concentrated
loads and near boundaries, Br for applied loading which is not radial,
such as a twisting moment or in-plane surface tractions, membrane theory
will not be sufficient, and a bending or higher-order theory would be
required.

Classical plate theory represents a two—dimensional analog of a
beam in which bending moments and transverse shear forces are active.
Bending shell theory accounts for moments and transverse shear forces in
addition to the membrane forces. The shell is thus assumed to behave as
a curved, thin plate. From experience with beam theories based upon the
exact equations of elasticity, it is known that shear deformation is
important at higher frequencies. Since shear deformation requires a
rotation of the normal to the shell’s middle surface (or a contradiction
of the hypothesis that plane sections remain plane), bending theory
assumes no shear deformation. Ignoring rotary inertia effects omits the
rotational kinetic enerqgy contribution to the system’s energy. This is
acceptable at low frequencies where the rotational velocity is small.
However, at high frequencies where the rotational velocity is appreci-
able, rotary inertia must be included. Therefore, bending theory would

not be expected to be adequate at high frequencies. Also,:in regions of
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high loading gradients, both rotary inertia and shear deformation become

G

more important, and a higher-order shell theory would be required.
Higher-order shell theories are related to bending theory in a :

manner analagous to the relationship between thick pl:ce and thin plate

R TNORCRD

theory. Higher-order theories account for rotary inertia effects, shear

deformation effects, or both. In addition to the shell’s middle-surface

loa e et

displacements, higher-order theories also utilize two rotations of a d

- !

normal to the shell’s middle surface. Both membrane and bending theory .
are formulated by neglecting higher-order ratios of shell thickness to '

mean radius, while thick shell theory includes more of these effects.

o

In general, the range of validity of thick shell theories is greater

[

than that for thin shell theories. However, the added complexity of the .
equations presented by thick shell theory may not be justified, espe- o
cially for problems with a ratio of shell thickness to radius less than

1,20. vhen frequencies get so high that the displacement distributions v
W are no longer linear across the shell thickness, then all approximate
; shell theories lose their meaning and only exact theories that allow

nonlinear behavior would be adequate.

’ 2.3 Dispersion )
The displacement distribution predicted by exact and approximate J

shell theory is generally dispersive. That is, each harmonic component

-

"
f
propagates at a different wave speed such that a pulse would distort A

e X

with time. 1In this context, a differentiation must be made between the
phase velocity and the group velocity. The phase velocity refers to the
propagating velocity of a constant phase wavefront associated with a

harmonic component and is defined as o
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where k is the wavenumber of the wave and C=C(w) is true for a disper- Eﬁj
sive system. The group velocity refers to a dispersive system having §E:
many harmonic components, such as a pulse. The disturbance that arrives :J
at a particular point x at time t will be the result of several harmonic raf
contributions and will have traveled with a group velocity Cg-x/t. This %&é
disturbance will have a dominant frequency Wy determined from a station- oy
ary phase treatment of the problem. According to Brillouin (1960), the :-4
group velocity is represents the rate at which energy is transported. A fif
more common definition is given by ;;

' Rl

For a nondispersive medium Cg’ C¢.

Two methods of displaying dispersion characteristics are commonly

used. The first is the frequency spectrum of the system which relates

S
) 9
frequency to wavenumber. A straight line passing through the origin )
(P
represents a nondispersive system. The group velocity is, therefore, ;ﬂ{
I
the local slope at a point of the frequency spectrum, while the phase ';f
velocity is the slope of the chord to a point. The second method is a %\
dispersion curve which relates phase velocity to wavenumber. A constant %ﬁ
phase velocity line indicates a nondispersive system. Often, normalized Ef
"
parameters are used, as well as logarithmic scales. By inspection of a !_
R
dispersion curve, it is possible to determine frequency, wavelength, ﬂ:‘
iy
phase velocity, and group velocity. If the frequency is taken as the ;:#
ar
independent variable, as is physically more appropriate, then both the 9
)t
frequency spectrum and the dispersion curve will yield wavenumbers in a ;:@
‘:\ Y )
complex wavenumber space. Reference is made to Frymoyer for examples of :Qf
‘h\ \
frequency spectra in the complex wavenumber domain for a cylindrical »
shell in-vacuo developed using the Flugge equations. When studying :E‘
bff
'\'f !
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coincidence phenomena, the phase velocity along the boundary of two
media must match to allow constructive interference as the waves propa-
gate. It is not necessary that the group velocities be the same.
Dispersive systems are often associated with a phenomenon known
N as "mode cutoff." Systems which have a finite phase velocity at infi-
N nite frequency, such as dispersive acoustic and elastic systems, have a
RN frequency spectrum that can yield complex or imaginary wavenumbers below
a certain frequency, known as the "cutoff" frequency. Below the cutoff
frequency, the imaginary componént of the wavenumber acts as an attenu-
B ation such that the mode cannot be said to propagate as a wave. At
N driving frequencies above the cutoff frequency, the mode will propagate.
The cutoff frequency can be found by evaluating the characteristic equa-
tion in the limit as the wavenumber tends to zero. This implies an 1
infinite wavelength which represents a zero frequency in a nondispersive

system, but which can yield a nonzero frequency for a dispersive system.

5 2.4 shell Displacements and Wave Types

5 The eigenvalues of any shell theory that are related by continui-
y ty of frequency considerations are known as branches. Generally, there

/ is one branch for each degree of freedom of the system. In contrast to
s plate theory, continuity requirements in the shell’s circumferential

X coordinate give rise to an infinite number of circumferential mode order
o numbers. For each of these integer mode order numbers, a unique charac-
teristic equation exists that defines the 2igenvalues. For fixed cir- -8
cumferential mode order number, the branches represent frequency spectra

of free wave propagation in the shell where the associated eigenfunction

Onclaraca g

represents the relatioship between the degrees of freedom that comprise

bl W e = qf By Y

that propagation.
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Approximate shell theories are usually based upon a displacement

field which is linear in the thickness coordinate. For a bending shell
theory, the longitudinal (axial), tangential (circumferential), and
transverse (radial) displacements of the shell middle surface represent
the system’s degrees of freedom. For all circumferential mode orders
except the axisymmetric mode, all of the modal displacements within each
branch are coupled. Often, the branch is named after the displacement
component which contributes the most energy to the vibratory mode over
some range of interest. For example, many authors speak of a longitudi-
nal branch. Since the contribution to the total energy is a function of
a normalized wavenumber, the branch nomenclature may not be appropriate
over an entire frequency range.of interest.

Exact theory is based upon a displacement field that is nonlinear
in the thickness coordinate. In addition to the infinite number of
allowable modes, wave types exist within the structure that do not exist
in thin shell theory, which yields only coupled displacement riodes.
Graff (1975) summarizes two of these for the case of an infinite elastic
solid. One of these is a dilatational wave which is irrotational and
associated with a change in volume. Graff calls this the P wave, or
primary wave, and it can be thought of as longitudinal wave associated
with elongation of material fibers and it propagates with a phase

velocity given by

C2 - E(l-uj
1 o(1+u) (1-24)

for the axisymmetric mcde. Here E is the material’s elastic modulus, p
its mass density, and v its Poisson’s ratio. The coupled lonoitudinal-
flexural wave velocity for the axisymmetric mode of a cylindrical mem-

brane shell is given by

1‘.
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2 2
Cp(w0) = E/p & €y

in the low frequency limit and is the same as the longitudinal bar

velocity. In the high frequency limit, this becomes

which is also the low frequency phase velocity, Cp, for compressional

waves in a thin plate. For v = 0.28,

Cb(w»O) = 0.88 C1

and

Cb(wﬂ°) = 0.92 Cl .

The second type of wave is a distortional wave that is equivolu-
minal and associated with distortion of the angle between two fibers but
without elongation of the fibers. Graff calls this the S wave, or shear
wave, which can be thought of as a torsional wave. The S wave has a

phase velocity given by
¢t = 5L
s 2o(1+u)

in the axisymmetric mode. The shear wave speed Cs for an infinite
elastic solid is equal to the torsional wave speed of both a membrane
cylindrical shell and a solid circular rod.

The addition of a boundary to the system, such as a semi-infinite
elastic medium and a vacuum half-space, introduces a reflective surface.
Under such a condition, a phenomenon known as mode conversion may exist
upon reflection such that pure P or S waves reflect both P and S waves.

For a doubly bounded structure such as a shell, the characterization can
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become quite complicated. The addition of a “oundary also gives rise to
a third wave type known as a surface wave. It contains only transverse
displacements and is confined close to the surface. For a vacuum half-
space this wave is known as a Rayleigh surface wave, and it has a phase

velocity given by Viktorov (1967) as
CR = CS (0.87 + 1.12u)/(1+p) < Cs

= 0.92 Cs for 4 = 0.28 .

The Rayleigh (1887) wave speed serves as the high frequen;y limit for
flexural waves in the exact theory of wave propagation in an infinite,
cylindrical shell in air, since for very hiéh frequency the shell curva-
ture approximates a flat plate and the shell thickness approximates a
semi-infinite medium. Both Pochhammer (1876) and Chree (1886) investi-
gated the propagation of waves in a solid cylinder. These solutions,
the Pochhammer modes, form the thick shell limit of modes which exist in
cylindrical shells.

For two semi-infinite elastic media with a common boundary, each
incident P or S wave will produce P and S reflected and refracted waves.
In addition, Stoneley (1924) showed that a surface wave can exist at the
interface between the two media if the shear wave velocities Cs of the
two media are nearly the same. Such a generalized Rayleigh wave is
called the Stoneley wave. If the system is comprised instead of an
elastic layer over a semi-infinite elastic media, a situation can exist
such that S waves are trapped in the layer and propagate by multiple
reflections. Such waves are known as Love waves. Love waves cannot
exist in a fluid layer since the fluid cannot support shear.

While an analysis based upon an exact elastic theory yields wave

types which are pure dilatation or shear, the addition of boundaries can
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make the analysis very complicated. On the other hand, approximate

e

oy
-''-

shell theories must deal with coupled displacement behavior. However,

e

their use is much less complicated than the exact theory. The errors

,.,“

introduced by an approximate theory can often be reduced over some

e
-

frequency range of interest by introducing correction factors called 2

adjustment coefficients or shear constants to the approximate theory

«
S

which force agreement with the exact theory at specific points. X

X

2.5 Development of the Flugge Thin Shell Equations

_k The Flugge shell equations represent a bending theory. They were
D

! chosen to describe the shell deformations for several reasons. Bending

T T a

theories in general are attractive in that they represent a considerable
% reduction in analytical and numerical complexity over higher-order

? approximate theories and exact theories. Since the frequency regime

i below the classical plate coincidence frequency is of more practical

A interest than higher frequencies, many of the advantages offered by

K higher-order and exact theories are not as important. Of the available
R bending theories, the Flugge theory results in a symmetric stiffness

matrix. This feature has the important consequence that it represents a

P

e

system in which energy is conserved. Other bending theories which

»

result in nonsymmetric stiffness matrices are known a priori to be non-

: conservative, which brings into question the adequacy of the fundamental

assumptions upon which those theories are based. Another advantage of

Lol LN

-~

b the Flugge theory is that it is a zero order theory that is a derivation -
from a higher-order theory. The development would allow future modifi-
cation to include shear deformation and rotary inertia effects as a i

first-order theory, or a still higher-order theory, if desired. This is '\

BN Ky nTa

a feature which the Flugge theory has in common with Mirsky-Herrmann

o thick shell theory. In fact, the zero-order Flugge theory yields the
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same equations as the zero-order Mirsky-Herrmann theory, although their
higher-order theories differ.

The coordinate system and geometry of the infinite cylindrical
shell are shown in Figure 2.1. The shell has a thickness h and a middle
surface radius R. A circular-cylindrical coordinate system (r,6,x) is
established such that radial distances are measured from the cylinder
axis. The circumferential and axial coordinates are measured from the
point of application of an applied harmonic point force directed radial-
ly outward. All axial and radial distances, as well as all wavenumbers,
are normalized by the shell’s middle-surface radius R such that they are
hon—dimensional. The shell’s thickness h is alsc normalized by the
radius. An additional radial coordinate p is introduced and measured
from the middle surface of the shell with the positive sense taken as
outward such that r=l+p. The coordinate system can therefore be refer-
enced to (p,8,x) with derivatives with respect to r replaced by deriva-
tives with respect to p. The normalized external radius of the shell is
denoted by a=1+h/2. The cylindrical shell is surrounded by a fluid
medium of characteristic acoustic impedance pc on its exterior and a
vacuum on its interior. Since the fluid medium will not be fully con-
sidered until Chapter 4, no ambiguity concerning the variable p should
occur during the development of the Flugge shell equations.

The deformation at any point in the shell will be referenced to
displacement components u, v, and w of the shell’s middle surface which
respectively represent axial, circumferential, and radial displacements.
All displacement components are also normalized by the shell’s middle-
surface radius R. The shell is assumed to be a homogeneous, isotropic,
elastic material with elastic modulus E, Poisson’s ratio u, and mass

density Pg- Unless otherwise noted, Table 2.1 represents the geometric

-----
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Table 2.1 Geometric and material parameters. ‘,
2
Symbol Description Value ’.‘,
.ﬂ
a ratio of shell outer radius to mean radius 1.005 '.0:
S,
h ratio of shell thickness to mean radius 0.01 -
E shell material elastic modulus 19.5x10%ON,/m? ";
P shell material density 7700 Kg/m3 R' ',
u shell material Poisson’s ratio 0.28 o
@
o fluid density 1026 Kg/m> T
XN
c fluid acoustic velocity 1500 m/sec ::‘:
o,|'y
o
2
and material parameter values used throughout this study. Initially, no " )
damping is assumed. A small amount of damping will be added later by '.
. =~ K]
considering a complex modulus in order to evaluate contour integrals in » ;
¥,
the complex plane. The shell is assumed to be freely supported at its 3.:‘:3
¥
ends, which will be useful in the derivation of the governing eguations :‘::'
T
of motion using Hamilton’s principle. i
Let us begin by assuming that at any point within the shell the 3.’-*
~
displacement due to loading can be given by the components u AN and '.t
b
u, which represent radial, circumferential, and axial deformations. 1In ja-
o
general, these components will be dependent upon p, 6, x, and time. If R
we expand these deformations in a Taylor series about the middle surface ::’
(p=0) of the shell, we would yield 3".
%
OO
«® m O Y
ur(pre:xrt) = ‘:“T uim)(e,x,t) %":f
m=0 o
< .‘
2 M (m) at
ue(Olerxlt) = : %‘ ue (e.rx;t) . (2-1) ®
m=0 :. ‘.:
J “‘
B
C.|‘:
n'|'-‘
"‘f
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m
%T uim)(e,x,t)

ux(Drelxrt) =
m=0

M represent the mth derivative of U, Ug and u

where u "
with respect to p evaluated at p=0.

The first term in each series represents the displacement of the
shell’s middle surface, the second term refers to rotation, and higher-
order terms quickly lose their physical definition. Flugge theory can

be characterized by the highest-order derivative term which is retained

in the expansions. First-order theory would be approximated by -

u, (p,8,%,t) = u(x,8,t) + p ull)(x,0,t)

(1)

8 (x,8,t) (2.2)

ue(p.lelxlt) = v(xX,8,t) + pu

(1

w(x,8,t) + p u, )(x,e,t)

Ur( £,9,x,t)

where u, v, and w have been introduced as the normalized displacements
of the shell’s middle surface. This assumption essentially requires
that all points which lie on a normal to the shell’s middle surface
before deformation must also do so after deformation. Higher-order
derivatives are considered to be negligible compared to unity. If the
strain variation in the radial direction is assumed small and neglected,

then u, would not be dependent upon p and

Ll(rl) = ( and ur(plelxlt) = w(x,8,t).

The first-order theory includes membrane, bending, shear deformation,
and rotary inertia effects.
The three-dimensional, strain-displacement relations in cylindri-

cal coordinates are given by
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XX 9x
Ju
1 e 1
9o "T3® Tt Y
e -i‘i
rr dp
(2.3)
€ -l&*_.ﬂfe
ex r 90 ox
£ aa_u.E Eu_x
Xr 9x dp

€ ail-leqf-l_ai_lu
ré 3p r 96 r 8 '

and the strains are symmetric such that eij = eji' I1f the first-order

approximation of the disglacements is introduced into the relations for

€t Exp’ and €. Ve find that err=0, as assumed, and
- W (1)
exr ax + Yy
1 (1) w

+ -v)] .

€0 =t Y 36

Classical bending theory neglects thickness shear stresses, which for an
isotropic material is equivalent to neglecting thickness shear strains.
This is often referred to as neglecting shear deformation and is valid
for a thin shell. This assumption reduces the problem to one of plane

strain. Setting ¢ = eer-O results in

RS
x ax
(2.4)

(1) _ , _ 3w
Yo VT3
which relates the slopes at a point in the shell to the displacement and

slopes of the shell’s middle surface. Since the shell motion is now
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% characterized entirely by the middle-surface displacements, the negligi-

3

B ble shear deformation assumption reduces the first-order theory to a i
KX zero-order theory.

2

;g The displacement components at any point within the shell can now '
“{ )
K be written as ;
.’é

W w(e,x,t)

‘é ux(prerxrt) = u(elxlt) - P _ai’— - 3
O. :
¢

4 ug(p,@,%,t) = £ v(8,x,t) ~ p WKL) (2.5) .

o8, u (p,9,x,t) = w(g,x,t) . ‘
] r . i
o ‘
: :
K Introducing these expressions into the remaining strain relations for ;
# €4x’' oo’ and €ox yields

5

:: R 3w .
S xx o9x P72 )
.’ 3X (]
- 2

! v p 3w 1

i’ 60 "3 "t 2 Tt (2.6) '
B

:. 1 3u v azw

N = = - —_— - .E

*ox "t t Tax Tt (PP e -

K2

[)

‘.' The strains can be written in terms of the membrane strains e for

1

\)
}' a cylindrical shell and some curvature effects k as

) = -

o €ex = Cxx = P Kyex - )
;; ® '

m

I €an ™ €an ~ P Kog 2 (=p) (2.7) .

& o8 66 80 =3 :
! ® n !
! €, = e, - K .+ K -

" ox ™ %ex T P (%o exngj("’] ;
i

where 1/r = 1/(1+p) has been expanded into a geometric progression. The

membrane strains are given as

¢
\
\
"
¢
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ou

Cxx = x
v

€oo = 35 * w (2.8)
du v

eex'_a—e+8_>t '

which represent middle surface extensions. The curvature changes are

given by
XK = azw
Y
2
3w
Koo = + W
% 367
(2.9)
K :a_l'l+azw
Ox 38 = 393x
K -azw -a_v
X8 389x  Ix
where Kyx and Koo represent change of curvature in a single plane, and
Kox and Keg 2T€ coupled curvature changes, or twists. Note that
®ox ™ Kex T "xo
is true.

If we assume small deformations, then we can apply the linearly
elastic Hooke’s Law for a homogeneous, isotropic material in order to
relate the stress state to the state of strain through the elastic con-

stants E and u. is negligible

If we assume that the radial stress Or
compared to the axial and circumferential stress, which is a valid

approximation for a thin shell, then the stress state is given by

o = E [e + u e..]
XX 2 XX 06
(1~-p™)
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which are identical in form to those derived for classical plate theory.
The stresses and strains are defined in terms of the middle-surface

deformations by Equations (2.6) - (2.8). Enough information now exists

to apply a variational energy method known as Hamilton’s Principle in
order to find the differential equations of motion governing the shell.
Wave motion in an elastic system is characterized by the dynamic

transfer between the scalar kinetic and potential energies. These ener~
gies are invariant with respect to the choice of coordinates and repie-

| sent fundamental properties of the system. From a knowledge of these
energies and the application of Hamilton’s variational principle, it is
possible to derive the differential equations governing the motion of
the shell in terms of the middle-surface deformations. A description of
the method and the details of the development are given in the Appendix.
The results, Equations (A.33), are presented here for time harmonic

excitation in differential operator form as
Lllu + lev + L13w = - ;2 u
p

L21u + L22v + L23w =W v (2.11)

1
Lyju + L32v + L33w w — W+3 (fd.- pa)

where cp is the low frequency phase velocity for compressional waves in

a plate, defined as

"
. - LJ - - - - PN - v - - n - . . . . -
\"'.. % d"~ \{ -‘-P" -F J'.f‘ U .(',,- ,- - ‘-"_?-",. (.n '.‘"“J‘-:J"" ‘f,.-'-f“-f“-" ‘,.\._\._v . -.‘\ "r'.(‘)'""“(‘"'\f\
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and D is the normalized extensional rigidity of the shell, defined as

Eh 2
D= =p ch . ¢
(14%) 'SP -

The fluid loading on the shell is denoted as Py while fd denotes the e

distributed radial forces applied to the shell. The differential

operators are given as 5

oA

2 1=y 82
+ [5-101+8]—
ax 362

[
[}
I

Je

4
-

[1+u] ]
2 ! 363

3 3
9 1-u d 3
U=z + [ 18 —, - B —
13 ax 2 3x962 3x3

[
L]
P

Ly =L

1-u 32 a®
X a8

RO et S
@

c
]

a
e

3

[
L]

a _ [3--/.1]6 ]

23 38 2z aeaxz

o g X, 5% X,

o

= L3

e

AR SN

o
P e

32 = Ly3

)4 4 4 )2
=1+ B[—, + 2 +—  +2—, +1]
33 ax? 0%ax? a0’ 36°

X
o
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is the normalized thickness-to-radius ratio. For a thin shell, with a .f,
Y
normalized thickness h<0.10, then 6<8.3x10_4. Terms proportional to B8 {;
are due to bending, while the remaining terms are membrane terms. 2'
)
These equations are the same as those developed by Flugge using a sﬁ:
.
strength-of-materials approach based upon stress resultants and balance n y
of forces. The symmetric, differential-operator matrix [L] represents a o
self-adjoint system. This system is positive definite such that any éé
[]
change in state from an equilibrium condition acts to increase the total g
-
energy of the system. The system is conservative and obeys the Maxwell- :'
v‘
Betti Reciprocity Theorem [e.g. Love (1927)]. Put in cannonical form, Ec
e
the system will yield positive real eigenvalues and eigenfunctions which : |
.f
N,
are orthogonal. ’

-
-
g

>
PoLrat

2.6 Wavenumber Space Representation of the Shell Eguations

-

The Flugge equations represent a coupled set of differential E?Q
equations in the dependent displacement variables u, v, and w and the 1
independent coordinate variables x and 6. Since the fluid surrounding :&:g:
the shell will respond only to the radial deformations w(8,x), it will q&
be necessary to determine w in order to match boundary conditions at the ki
shell-fluid interface. Unfortunately, the Flugge equations in differen- Erh
tial form are too complicated for standard solution techniques to apply. é;
However, by transforming the equations into wavenumber space, they will é:
be reduced to a set of algebraic equations which can readily be solved ;?'
for the transformed radial deformation. Inverse transform techniques . Eg
can then be used to determine the deformation w, or ultimately the i"
acoustic pressure, in coordinate space. The difficulty in solving the E;‘
differential equations is replaced by the difficulties of an inverse §$
Fourier integral in the complex domain and convergence considerations of :‘
an infinite Fourier series. A characterizatioﬁ of the shell in wave-

»
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number space will display the dispersive nature of the shell vibrations.
Let us begin by assuming a separable solution in the axial and
circumferential directions. Let us further assume that the shell defor-

mations can be expanded in a Fourier series over the circumferential

coordinate 9 as

u(e,x,t) = Y U (x) {g‘;f; ne } exp(-jut)
n=0

v(e,x,t) = ¥ V_(x) { g‘l’; gg } exp(-juwt) (2.13)
n=0

= c o .
w(B,x,t) = 3 W (x) { s?i 29 } exp(-juwt)

n=0

where either a Fourier cosine or sine series is chosen. The parameter n
is called the mode order and represents a wavenumber in the circumferen-
tial direction. Considerations based upon continuity restrict the wave-
number n to integer values. The functions Un(x), Vn(x), and wn(x) rep-
resent the modal dependence in the axial direction. Relations (2.13)
state that the middle-surface deformations can be expressed as the sum
of their modal contributions. Of the eight possible 6-dependent combi-
nations represented by Equations (2.13), only two are compatible with
the strain and stress relationships given by Equations (2.6) and (2.10).

These are

u < cos né u « sin né

v « gin né or v « cos né

w « cOos né w = sin n8 ,

and either set would ultimately yield the same results. We will arbi-

trarily choose the first set.
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Introducing Equatons (2.13) with the above choice of series rep-
resentation into the differential Equations (2.11), multiplying each
equation by either sin(m@) or cos(m®) as appropriate, and integrating

each equation over 8 from (O,2n) yields

My U (X) + MV (x) + M g (x) = - o® U_(x)
3
)
' My U (x) + MooV (x) + Mg (x) = - o v_(x) (2.14)
e 2n
My U (x) + MV (X) + MogW, (x) = o? W (x) + 555 j(fd-pa) cos(nd) de
0

where the driving frequency w has been normalized by the ring frequency

of a membrane shell, given by
' 2
Q= 2 =w§=-1/2{c_J @
wring cp cp Ye

such that an Q of unity represents a driving frequency with a wave-

length equal to the circumference of the shell. The relationship be-

tween the normalized frequency @ and the ratio of the driving frequency

; to the classical plate coincidence frequency, w., is also shown. For
nominal values of a steel shell in water with an h of .0l, the plate
coincidence condition would occur at about 2 equal to 28.4. Tinme
dependence is implicit in Equation (2.14).

In deriving the above results the orthogonality relations

2n o
| cos(n®) cos(m@) de = = §
0 €, nm
(2.15)
2n .
é sin(nd) sin(m8) de = n(en— 1) Snm
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o
were used where 3
X 1
l1whenn=20 il
€ = Neumann factor = »
n 2 when n > 0 N
I Owhenn #m Tﬁ
§__ = Kronecker delta function = . i
nm | 1 whenn=m %;
The operator matrix is now defined as N
2 3
d 1—// 2 4
Mll = 3—2 - [—2—][1"'5] n
X -
Ly ~ i
- (1l 3 1)
M= 7N 5% o
by
3 lew .23 23 :
~4
LR "l B L " .
X '
s
M,, =-M
21 12 S,
1-u ¥ 2 :
>
2 R
- 3-u & LA,
X
M3 = M3 &3
hai
l~
M3z = = Ma3 N
4 2 ]
3 23 4 2 4
My, =1+ B(—, -2n" —, +n - 2n" + 1) y
33 o 2 0y
o
and is independent of the circumferential coordinate 6. The Fourier i.

series expansion has transformed the governing equations from & coordi-

nate space into n wavenumber (or modal} space.

A Fourier integral transform will be used to relate the axial

coordinate x to the continuous normalized axial wavenumber §. The
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dimensional or unnormalized axial wavenumber has been multiplied by the
shell’s middle-surface radius R to yield the nondimensional §. 1In a
similar manner the normalized acoustic wavenumber is denoted as k. The

transform pair are defined as

+o©
£(g) = | f£(x) exp(-j&x) dx (2.17)
1+
£(x) = 5 [ (&) exp(+j&x) dE (2.18)

where the form has been chosen such that a wave propagating in the
positive axial direction £(x) = A exp[j(kx -~ wt)] yields a positive
wavenumber spectrum £(&) = A &§(& - k) where &(y) is the Dirac delta
function. A superior tilda is used to denote the Fourier transform.
The Fourier inversion formula, given by Equation (2.18), is a generali-
zation of the Fourier series over an infinite interval of x. The
Fourier transform of a derivative can be shown to be

+%
m m
E[a—f‘} - J 2L exp(-3tx) dx = (GO™ E(8) (2.19)
) X

-
subject to the condition that f(x) and all of its derivatives up to the
mth derivative approach zero as |x| approaches infinity.

By applying a Fourier transform to the governing Equations (2.14)

and with use of Equation (2.19) for derivatives, we yield

-~ " S 2 =~
g 0,8) + B0 (8) + AR (8) = 98 §_(8)
.~ - o~ . - 2 -
iy 0 (8) + flp,0 (&) + flyqf (&) = 2 T (&) (2.20)
e 21
- - _ 2 n -
iy 0 (8) + Figy0(8) + figgf (8) = & @ (8) + o J (E;-B,) cos(ne) de
0

v
U
¢
(]

]
i
Q

AN AL AN A A AN



bt H VRN WU A RS KR T O AN NN N UR VY VRV RO PO KR K AN Ry CO.8°0.0 4.2 4,0 V.4 b 0 v,9 60
o Y r KT

ot
3
¢
38 ru
4
"':
where ﬁa and Ed are the Fourier transforms of the acoustic pressure e
e
loading and the applied forces. The transforms of Uyr V,, and W (x) are =4
- o~ - -,
denoted by Uy V,,» and W (%). Relations (2.20) are independent of the ';p(
TN
x-~coordinate. The operator matrix is now purely algebraic in n and & f}ﬂ
RN
and is given by b
5.2, Ll 2 _ - %)
f1 = &+ ST HIBIRT = myy 7

ﬁ - ._.[l+,uln£ - 5

12 = 77 )

=
0

13 -j&(u + 55.2 - (%g)ﬁnz] = j I.‘:‘13

My =-Mpp=-im,
~ 1-u4 2 2 o~
M22 = [—2—][1+36]E. +n = my, (2.21)

3-u, a2 ~
Ma3 = nl(=7)BE" + 1] = m g

M3p =~ M3 = -3m;
My, = ff = A
32 = M3 = My3 A
. 4 2,2 4 2 - :
Myg =1+ B[& + 2n"8" + n” - 2n° +1] = M33 !
L
Note that the system is Hermitian for real &. o
(S
In general, if the transforms of the acoustic pressure loading )
and the applied forces were known, Equations (2.20) could easily be ®
2
solved for Un' Vn’ and wn(E). In that case, the displacements would be N’
1Y
. Iy
given by o)
i
]
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', © +® .
b w(o,x,t) = 35 L costne) [ G (&) eI&E) g
n=0 .

1
N © +o
% 1 . = j(&x-wt)
§ v(8,x,t) = 3= ¥ sin(ne) J' 7 (8) e aE (2.22)
a n=o _»
o - 4o
: w(9,x,t) "%ﬁ Y cos(ne) J Wn(a) o (Ex-ut) dE

' n=0 .
.
" The épplied force fd is a harmonic point source located at x=0 and &=0.
)
is The acoustic pressure loading will be developed in Chapter 4 and will be
}
) dependent upon the radial displacement w such that it would appear on
é the left hand side of Equation (2.20). The next chapter will deal with
)
; the shell in a vacuum such that the acoustic pressure loading is zero.
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Chapter 3 g&
i
. .
THE BEHAVIOR OF A SHELL IN VACUO ':::;}
Lt
3.1 Introduction A
I~
This chapter will discuss the vibration of a shell in the absence n'ﬁ
A
of a fluid loading. Concepts and nomenclature will be introduced which Py
@
will be useful in later work. The in vacuo behavior will also serve as 2;1
o
a basis for comparison when fluid loading is considered. The first i X
section deals with the canonical form of the shell equations where the >0
applied forces are taken as zero. The eigenvalue solutions at large 1.}
A
axial wavenurber are then used as a basis for developing a branch nomen- :"':
n
clature. The eigenvalue behavior near the lower cutoff frequency is “ﬁa
investigated. Frequency spectra, dispersion curves, and group velocity 553
data are presented, and the effect of varying the shell’s thickness is :: 
discussed. Physical insight into the vibration modes is introduced. A 2:’
comparison is made between the approximate Flugge theory based upon a -

thin shell theory and a theory developed by Gazis from the exact three-

dimensional equations of elasticity. Finally, the problem of the forced

fat
motion of the shell is considered and developed in a form convenient for ;!
later work when fluid loading is added. ;i:
.'f_-.:
e
3.2 The Eigenvalue Problem bty
[
In the absence of applied and fluid loading, the equations of T
W
motion governing the middle~surface displacements of the shell assume a *{S
AN,
canonical form given as ‘;2;
o
L ~ ~ : : "i
(M] [X] = X [X] (3.1) '
Sl
U
; ;s;;

RS
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where [M] and [X] are understood to be matrix quantities. The scalar X
represents the eigenvalues of the system. The column matrix [X] is the
transformed modal deformations ﬁn’ Vh and ﬁn' The square matrix [M] is
effectively a stiffness matrix with elements which act as stiffness

influence coefficients.

my Imp Img
(#) = | -my, Wy My (3.2)
“imp3 My3 o Mgy
The coefficients ﬁij are defined by Equation (2.21).

Equation (3.1) could also be written as
((M] - X [1]) [R] = [A) (K} =0 (3.3)

where {I] is the identity matrix and [A] is the characteristic matrix.
For a nontrivial solution, the determinant of the characteristic matrix

must be zero, thus yielding the characteristic equation

3

det([K]) = s;2% + szxz ts a5 =0, (3.4)

which is third order in A. The coefficients are given as

s, = -1

Sy ®Myp ¥ My +Myy
Sy = e, + Wiy + My = fy oy = fiyqfigy - Mgl (3.5)
35 R Myt My3 = M MHy = MyM33 ~ MyoMag .
S, = M By ofay + 2R M oy = Foofles = B2ofes - M2.m
4 = M1MoM33 12M3M23 T MoM33 = MMy — MHy3Myy

For real £, [A] is Hermitian. An investigation of the coefficients sj

of the characteristic equation shows that for real { the signs of the

coefficients alternate. From a theorem presented by Wilf (1962), such a

wuh tpd. 9,
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o
system is positive definite, and all of the resulting eigenvalues are .i
real and positive. Therefore, for each real §, three positive real Y
eigenvalues, or natural frequencies, must exist. If frequency is taken ;\
as a parameter, which is physically appropriate, each eigenvalue will i%
represent a point on a frequency spectrum. These spectra are often ?&
referred to as the shell branches. Qtt
Each eigenvalue represents an orthogonal mode of vibration, or ;f
eigenfunction, in which the middle-surface displacements are coupled by ;,,
the governing equations of motion. Because of the coupling between dis-~ ..
piacements, pure wave types generally cannot exist in a shell. However, ﬂ%
the concept of a primarily longitudinal, torsional, or flexural shell Eﬁ
motion does provide some physical meaning to the interpretation of the ;J
branches and to the discussion of various results. 1In general, the dis- s;
placement coupling is not constant at all axial wavenumbers, and any 1%?
nomenclature associated with a branch is usually applicable over only 3
some wavenumber region of interest. The nomenclature used in this study - ﬁg
W

is be based upon the behavior of the branches at large axial wavenumber
where the shell behaves much like a flat plate.

g
3.3 Establishment of the Branch Nomenclature at Large Axial Wavenumber ﬁg
The characteristic equation will yield three eigenvalues at each fg
. mode order n of the form :ﬁ
)
A= XMEn,u,B) = an(i) g=1,2,3 h»:
(=
it
for fixed v and B. The natural frequencies would therefore be o3
n
s
an(&) = Ian(E) g=1,2,3 (3.6) 2
N
L . . ) . ®
which is recognized as a dispersive frequency spectrum. In the axisym- X
4
L \ ¢
L} ‘-'
N
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v
N

™ ] v TPy P TP P - = " LR N T VLT LY T T T T W WL Y
‘A"‘A"‘I‘." ‘Q‘:‘i‘a A SO AT IR .ll Nl .0- "‘ N .‘- 0."'..- * “ '.-f\-“ oy {&' 5 f ﬁ “he 'V..* A \" .’- 5‘ Rl



- A e

R A A N A B D O S AT QoG

43

metric mode, the circumferential displacement is independent of both the
axial and radial displacements at all wavenumbers. This is one of only
two pure wave types which can exist in a shell. The characteristic
equation decomposes into the following set of two equations

~ ~ -2
' (3.7)

my, - on =0 for g=2

where ﬁij are defined by Equation (2.21) with n=0. The initial associa-
tion of values of q with particular eigenvalues for the purpose of
nomenclature is arbitrary. If the eigenvalue of the decoupled equation
is denoted by g=2, then this second branch can also be designated as the
torsional branch since it is only dependent upon the circumferential

displacement and is described by

~ _ l-u 2
)\02 =My, = (—2—)(1+35) 3

which is valid at all axial wavenumbers.
The other two eigenvalues can be found from the first of

Equations (3.7) to be

Ag 1 =5 B84 821 s dg® - 2e® et 282 v 1]
01,3 ~ 2
where only the lowest order 8 term of each power of £ has been retained.
At large &, the eigenvalues are approximated by
N3 =3 188+ &€ v 1 e - 1) (3.8)

Let us associate the negative sign with the first branch (g=1), then

2
Mi = &

o3
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which yields a frequency spectrum given by 901’5' Introducing this
eigenvalue into the decomposed equations of motion as given by Equation

(3.3) yields the displacement ratio

limit {|G.W evaluated at \,,} >> 1 .
o 1G9/ 01

This indicates that the eigenfunction associated with XOl represents

primarily axial displacement at large §. Therefore, let us also call
the first branch the longitudinal branch.
In Equation (3.8) the eigenvalue assocjated with the positive

sign is denoted by g=3 and given by

4 4
>\03 = B + 0.5 = BE

for 8>0. At this eigenvalue, it can be shown that

limit {(|#./0.{ evaluated at A,,} >> 1
e W/ Ty 03

which indicates that A03 has an associated eigenfunction that represents
primarily radial displacement at short axial wavelength. Therefore, let
us also refer to the third branch as the flexural branch. Note that for
a membrance shell, x03-1 is the solution of Equation (3.7).

At higher mode orders the characteristic equation becomes quite
complicated. If we simplify the system for the moment by considering a
membrane shell, we see that the eigenvalues at large wavenumber are

- 2 2 ey, 22 2
limit X\ _ = + n%), n“), 1 £ =1,2,3. 3.9
foe nq (& ) (—7—)(E +n7) or q ( )
By solving the equations of motion for displacement ratios, it can be

shown that

S ST RN o




. e 2 2
limit {|U evaluated at A, = (£ + n®)} > 1
E | n./wnI nl

. e 2 2
lzﬂit {|vn/wn| evaluated at A ; = (§° + n%)} << 1

which indicates that xn1=E2+n2 is associated with a primarily axial

displacement and is a generalization of the axisymmetric solultion to
account for circumferential mode order number. Likewise,

- = e l-py,, ;2 2
1tfit (|0 /W, | evaluated at X\ , = (5°)(E" + n®)} << 1

- = e l-py,, 2 2
lzfit {1V /M | evaluated at X , = (7)(E° + n%)} >> 1

indicates that knzs(l—u)(£2+n2)/2 is associated with a primarily circum-
ferential displacement., This is also a generalization of the axisymmet-
ric solution. Finally,

lzfit {IUn/wnl evaluated at xn3= 1} =0

léfit {lvn/wh' evaluated at A ;= 1} =0
which indicates that An3-l is associated with primarily radial motion.
This is not surprising since the large wavenumber approximation of xOB

of a membrane shell is unity.

For the general theory containing bending terms, these results

can be extended to yield

L g2 2

an =& +n
= 1~y 2 2

Anz = (—7—)(£ + n’) (3.10)
~ 4

Xn3 = BE + 1
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which are valid at large axial wavenumber for all n. Note that these
results indicate that neither the longitudinal nor torsional branch is
sensitive to changes in shell thickness at large wavenumber. This will
be found to be true not only at high wavenumber, but over the entire
wavenumber range.

It is interesting to note that the axisymmetric, large wavenumber
behavior of the longitudinal branch matches the behavior of the longitu-
dinal vibration of both an infinite plate and an infinite bar, and that
this behavior is nondispersive.' Similarly, the axisymmetric mode of the
torsional branch at high wavenumber approximates the nondispersive
behavior of the torsional vibration of a solid circular rod, which is
the analog of horizontally polarized S waves in a plate. Likewise, the
axisymmetric mode of the flexural branch approximates the dispersive
behavior of flexural waves in a plate at large wavenumber. Examination
of Equation (3.10) indicates that for each branch the higher mode order
numbers behave like the axisymmetric mode in the region n<<&.

3.4 Branch Behavior Near the Cutoff Frequencies

The lower cutoff frequency represents the transition between real
and complex wavenumber space. The lower cutoff frequency nomenclature
is introduced to distinguish between an upper cutoff frequency which
exists when fluid loading is present. For the shell in vacuo, the upper
cutoff frequency is infinite and the lower cutoff frequency can be
referred to as simply the cutoff frequency without ambiguity. Above the
cutoff frequency, a real wavenumber exists, the characteristic matrix
(A] is Hermitian, and wave motion can propagate freely at a finite wave
velocity. At the cutoff frequency the phase velocity in the axial
direction becomes infinite while the group velocity goes to zero, indi-

cating that energy is no longer propagating. Below the brénch cutoff
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frequency, only a complex wavenumber can exist and free wave propagation
in the axial direction is no longer possible. 1In this region, the char-
acteristic matrix is no longer Hermitian but remains symmetric.

The branch cutoff frequencies can be found by evaluating the
characteristic equation at infinite wavelength (zero axial wavenumber)
where the motion is independent of the axial coordinate. For nonzero

mode order, the characteristic equation becomes

~ 2C ~2 .
at infinite wavelength. The modal cutoff eigenvalue of the qth branch

is denoted by X The coefficients ﬁij are given by Equations (2.21)

q
calculated at &=0.

The association of a branch nomenclature with a cut-
off frequency is done by extending the nomenclature introduced at large
axial wavenumber down to zero axial wavenumber by continuity of the fre-
quency spectra. In the vicinity of the cutoff frequency, the branch
nomenclature no longer indicates the primary vibrational mode associated
with the eigenfunction.

At zero axial wavenumber, the longitudinal displacement is inde-
pendent of both the circumferential and radial displacements. This lon-
gitudinal shear vibration is the second pure wave type possible in a
shell and can exist only at the cutoff frequency of the torsional branch
given by

2C 1

n2 )(1+6) .

m11 (3.12)

This is essentially a generalization of the purely torsional, axisymmet-
ric mode at higher mode orders. Above the cutoff eigenvalue, the longi-
tudinal displacement is again coupled. In the vicinity of the cutoff

eigenvalue, the second branch exhibits a primarily axial displacement.

‘T .
.a.:’.n..m.z‘.:.a.zi‘ N -'

PR g

e -

XA

Al A



The right hand term in Equation (3.11) corresponds to plane- a@
.!
strain shell vibrations and yields cutoff eigenvalues given by JE
®
.
2 \Ii
Xﬁ - (nz + 1)2 + B(n” - 1)2 (3.13) N
1 n? o+ 1 y
a;
2 2 '8
2, =gl =Ll g2 (3.14) A,
n“ +1 .
3
f
where a truncated, binomial expansion has been used to approximate the *ﬁz
: al:
square root. It can be shown that ®
N
limit {[V_A 1 N 1 B
imit {Ivh/Whl evaluated at A,} =n 2 o
€0 {
iy
which represents a predominately circumferential displacement. Hence, %
-.J,l
in the vicinity of the cutoff eigenvalue, the first branch exhibits Q:i
ha
primarily circumferential vibration for n>0. Likewise, ﬁ‘:
limit (|7 M _| evaluated at A\°,} = nl¢ o
ot
%?
indicates that the third branch exhibits primarily radial motion at low X
wavenumbers for n>0. ‘
v .t
For the axisymmetric mode, Equations (3.12)-(3.14) still correct- Ny
. o
ly predict the cutoff eigenvalues. However, the branch behavior changes <
L 3
near cutoff due to the uncoupling of the circumferential displacement at :él
all wavenumbers. It can be shown that gg-
3

léfét {|0,/W,| evaluated at X5} = 0

AT

Ny e

I

which indicates a totally radial displacement. Therefore, near the cut-

PRAXANRS

off eigenvalue, the first branch exhibits primarily radial motion. Note

> v
]

> , X, ? 4
-tvo_t - >

that le-«1+s is the normalized ring frequencylfor flexural waves on a

?SJ l:d' v

o T )

>
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thin, cylindrical shell. As expected, the normalized ring frequency

BRI EN
2y

would be unity for a membrane shell. Likewise,

limit {|0y/W,| evaluated at A83} =
£-0

indicates that the third branch consists primarily of axial motion at
low wavenumber.

Figure 3.1 shows the behavior of the cutoff frequencies versus
circumferential mode order for each branch at several normalized shell
thicknesses. The curves are shown as a continuous function for conven-
ience only. As is expected from Equations (3.12) and (3.13), for thin

shells, variations in shell thickness have little effect upon the low

o

s, W
o)

wavenumber behavior of the longitudinal and torsional branches. At

-
Ly

R A7

Y
oy

large mode order, the cutoff frequencies can be approximated by

<

\

c
in

c~ll—u
an =] n for n>>1 (3.15)

c 2
3 = V8 n“ .

[}]
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Figure 3.1 demonstrates that the low-frequency spectrum consists of a

finite number of propagating modes for each branch. That is, the shell ;n
displacement distribution can be described by a finite number of terms ;2
in the series representation given by Equations (2.13). For example, fﬁ?

Y
.
ol

below the ring frequency (2=1.0) the longitudinal branch does not con- e
®

tribute at any mode order. Below ©=0.5, only a single torsional mode o

(the axisymmetric) and a finite number of flexural modes contribute. 1In Qf

general, thinner shells contribute more flexural modes to “1e displace-

ment field than do thicker shells.
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Figure 3.1. Branch behavior of the lower cutoff frequency versus
circunferential mode order number for a cylindrical shell in vacuo at
several values of normalized shell thickness. Continuous curves are
shown for convenience or.ly.
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3.5 Physical Description of the Branches qu
The total displacement field of a shell consists of the sum of gﬁﬁ

the contributions from each circumferential mode order. Similarly, the p:a'
modal displacement field consists of the contributions from each branch i: {
which, in turn, depend upon contributions from each degree of freedom. :h&g

For the Flugge theory, the degrees of freedom are the axial, circumfer- ' ;;-!
ential, and radial displacements of the shell’s middle surface. 2: b
Figure 3.2 shows the fundamental, dynamic motions associated with ’ﬂg:

the axisymmetric mode. Each branch is characterized by a frequency de- j:?
pendent, weighted sum of these fundamental motions. From this perspec- :gﬁg
tive, a zero cutoff frequency must be physically associated with a rigid §$§
body motion. In the axisymmetric mode, both the second (torsional) and 5%
third (flexural) branches have a zero cutoff frequency. At this fre- %?ﬁ
"

quency, the branches respectively exhibit circumferential or axial

motions. This is physically realizable as a rigid-body rotation or
translation of the shell. Since a rigid-body radial motion is not pos- o
sible in the axisymmetric mode, the primarily radial motion exhibited by

the first branch (longitudinal) at low wavenumber must have a nonzero

v1+8 vhich is, indeed, the cutoff frequency of the first branch.

%

i gl o ¢
-

i

- -

g
cutoff frequency. Also, since the cutoff frequency implies motion inde- 531:
]
pendent of the axial coordinate, the shell acts like a ring of rectangu- §.?
W
lar cross section. The fundamental resonance must be the ring resonance “;
-

The fundamental, dynamic motions of the first mode order (beam N
mode) are shown in Figure 3.3. Each dynamic motion is proportional to s};,
either cos(8) or sin(®). A rigid-body translation in the radial direc- z;:
tion is now possible. This is reflected by the zero cutoff frequency of Eﬁs;
the third branch (flexural) which consists of primarily radial motion at ;E;‘

g ]
long wavelength. Figure 3.4 shows the dynamic motions of the second *;FR
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" Figure 3.2. Axisymmetric dynamic motions of a vibrating thin by
N cylindrical shell. ’
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’ Figure 3.3. First mode order dynamic motions of a vibrating thin
cylindrical shell.
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AXIAL

CIRCUMFERENTIAL

Figure 3.4. Second mode order dynamic motions of a vibrating thin
cylindrical shell. ' '
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)
% mode order. For this and all higher mode orders, each dynamic motion

will exhibit 2n nodal lines in the circumferential coordinate. However,

the general displacement field of the branch would be quite complicated.

3.6 Frequency Spectra, Dispersion Curves, and Group Velocity

Frequency spectra for the real positive branches of the shell in

The symmetric

vacuo are shown by Figures 3.5 to 3.7 for n=0 to 10.

extension into negative, wavenumber space is not shown. The frequency

spectra were computed from Equation (3.4) by use of Laguerre’s method.

The nomenclature A, C, and R on the figures indicates the primary dis-

placement is either axial, circumferential, or radial within the indi-

cated wavenumber region. The frequency spectra of the shell’s longitu-

dinal branch is also compared to that of the longitudinal vibration of a

bar, namely

2

0 Q= 1 -y & .

Similarly, the torsional branch is compared to the torsional vibration

of a bar or membrane shell with a frequency spectra given by

The flexural branch is compared to the behavior of both the classical

and Timoshenko-Mindlin plates. The frequency spectra of a classical

plate in vacuo is .9

Q=J—_B‘ £2'

while N
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mode order numbers.
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A, C, R designate that the displacement field is
primarily axial, circumferential, or radial in the indicated wavenumber
Comparison is also shown with classical bar theory.
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) Figure 3.6. Real, positive frequency spectra predicted by Flugge theory
; for the torsional branch of a cylindrical shell in vacuo at various mode
S order numbers. A, C, R designate that the displacement field is 1
- primarily axial, circumferential, or radial in the indicated wavenumber 4
region. Comparison is also shown with classical bar theory.
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defines the frequency spectra of a Timoshenko-Mindlin plate in vacuo
{Mindlin (1951)]. The normalized plate moment of inertia is I = B and
the normalized shear deformation factor is

241

S =
7 (1-u)

The classical bar and plate represent the high frequency limit of Flugge
shell theory, as can be seen by comparison with Equation (3.10).

The central region of the wavenumber spectrum is characterized by
strong coupling of the middle-surface displacements. As can be seen,
the frequency spectra agree with the previous large and small wavenumber
discussion. Note that the large linear regions of the curves indicate
that the large and small wavenumber approximations are valid over a wide
range. Also, the range of validity of the zero wavenumber approximation
tends to increase with increasing mode or@er for all modes with a non-
zero cutoff frequency. A similar behavior is observed with the thick-
ness parameter 8. A region of nondispersive behavior would be indicated
on these logarithmic frequency spectra as a linear region with a slope
of unity as is the case in Fiqures 3.5 and 3.6 for classical bar theory.

Dispersion curves are given by Figures 3.8 to 3.10 for n=0 to 10.
Note that in terms of normalized parameters, the normalized phase veloc-

ity is given by

mlo

c
-2
o= ¢

P
where cp is the low frequency phase velocity of compressional waves in a

plate. Nondispersive regions of the wavenumber spectrum would be indi-

cated by a zero slope.
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Figure 3.8. Normalized dispersion curves predicted by Flugge theory for
the longitudinal branch of a cylindrical shell in vacuo at various mode
order numbers. Comparison is also shown with classical bar theory.
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Figure 3.9. Normalized dispersion curves predicted by Flugge theory for
the torsional branch of a cylindrical shell in vacuo at various mode
order numbers. Comparison is also shown with classical bar theory.
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In terms of normalized parameters, the group velocity is given by

0
1
o la”
\
QI o
m

Normalized group velocity versus wavenumber curves are given by Figures
3.11 to 3.13 for n=0 to 10. The group velocity was calculated from the
frequency spectra by use of a five-point, cubic spline function and then
by differentiating the resulting approximation. Reference is made to
Forsythe, Malcom, and Moler (1977). The technique locally approximates

the frequency spectra over five points centered on the point of interest

by fitting cubic polynomials between each pair of points. Aadjacent

AN

polynomials join continuously with continucus, first and second deriva-

AWy, T .

tives. The resulting spline function minimizes its potential energy
and, in this sense, uniquely possesses the minimum curvature property of
all functions interpolating the data. The resulting approximate poly-
nomial function can then be easily differentiated and evaluated at the

center point to yield the normalized group velocity.

Comparison of the phase velocity and group velocity curves shows 4

L

that, for those modes with a nonzero cutoff frequency, the normalized :j
Wy

phase velocity approaches infinity and the normalized group velocity tj;
2

approaches zero as the wavenumber approaches zero, indicating energy is

A AT o

ceasing to propagate. For both the longitudinal and torsional branches,
the high wavenumber behavior is nondispersive. If both Co amd Cg were

plotted together versus wavenumber, the result would be the classical

behavior associated with normal mode propagation in a duct. For the g
w,
longitudinal branch this relationship would be given by CyCo=l while for -
(&4
. . . bt
the torsional branch it would be CbCﬂ=(l+u),2. At large axicl wave- g
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L)
& number, the flexural branch exhibits the behavior C¢=2CG, which is the
L dispersive behavior governing flexural waves in a plate. !
§ The effect of the normalized shell thickness upon the behavior of ]
$ the flexural branch is shown in Figures 3.14 to 3.18. For those modes )
g which have a zero cutoff frequency, namely the axisymmetric and first f
k beam modes, the branch behavior clearly has three regions of distinc- )
g_ tion. At low frequency (below @=1), the branch acts in a manner similar f
é‘ to a membrane shell. At normalized frequencies above approximately two, . ;
N the flexural branch behaves like flexural waves on a classical plate. A -
?; transition region exists between the membrane and plate regions in which E
'; bending terms become important. As the mode order increases above one N
7; and the shell becomes thicker, bending effects begin to dominate the en-
4 tire wavenumber spectrum. Both the longitudinal and torsional branches ;
: are insensitive to variation in normalized shell thickness. {
.g 3.7 Comparison of Flugge and Gazis Theory ;
{ Approximate thin shell theories and shell theories based upon the E
. exact three-dimensional equations of elasticity were discussed in the .
previous chapter. This section compares the results obtained by the ;
j approximate theory of Flugge with a theory developed by Gazis (1959) E
. based upon elasticity. Graff (1975) provides an excellent discussion of !
N Gazis'’ theory. .
7 Upon examination, the equations developed by Gazis are quite ?
complicated. Evaluation of the characteristic equation requires the S
solution of a 6X6 determinant whose terms contain Bessel and modified .
N Bessel functions of the first and second kind. Spurious solutions may :
! be generated in the transition region between the Bessel and modified E
5 Bessel functions. Thesge and other numerical problems are discussed in i
K the original references. Since the main purpése in using én approximate .
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Figure 3.15. Effect of shell thickness variation upon the frequency
spectrum of the n=1 mode of the flexural branch of a cylindrical shell
in vacuo.
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theory was to avoid the complexities of an exact, elastic theory, Gazis’
equations were not evaluated directly. Instead, selected results pre-
sented in the original papers were reproduced and enlarged by a duplica-
tion process and then compared with results generated by Flugge theory
using similar parameters.

In all cases, only the lowest three branches predicted by Gazis’
theory were used. Poisson’s ratio was taken as 0.30 and the normalized
thickness was taken as 1/30. All variables from Gazis’ work have been
converted to the parameters used in this thesis. Figure 3.19 shows a
frequency spectra comparison of Flugge theory and Gazis theory at axial
wavenumbers less than 3n for the n=1 and 2 modes. As can be seen, all
three branches exhibit excellent agreement between the two theories over
the wavenumber range. Figure 3.20 extends the frequency-spectra compar-
ison to large wavenumber. The torsional branch has excellent agreement
over the entire wavenumber range shown and the longitudinal branch
exhibits reasonable agreement up to £=70. The flexural branch shows a
reasonable agreement between the two theories below £=30. Figure 3.21
compares the normalized phase velocity predicted by the two theories for
the first and second mode orders for wavenumbers less than 12n. The
theories show reasonable agreement over the entire range.

While the limits of validity of the Flugge theory in wavenumber
space are interesting from a mathematical view, the limits in frequency
space are of more practical interest. The forced motion of the shell is
dependent upon all three branches, as will be discussed in the next
section. If we assume that Gazis’ elastic theory is correct at large
wavenumber, then the Flugge theory will be limited by frequencies at
which the flexural branch is reasonably valid. For h=1,30, this would

be below a normalized frequency of 25 which corresponds to a frequency
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> approximately three times the coincidence frequency of a plate with the

same thickness. In terms of plate coincidence frequency, this limit

o will also be taken as an approximation of the upper frequency limit of
o validity for h=1/100 for a shell in vacuo. It is expected that the
L addition of fluid loading to the problem would increase this frequency '
g limit since the contribution of the shell would only be part of the . %
8,
5 total solution.
'i.' :
% Although the comparison with Gazis’ work has been limited to the y
P n=1 and 2 modes, it is expected that the higher-order modes behave simi- y
3' larly. Gazis shows a convergence of mode behavior above &=3n in Figure )
A
ﬁ 3.21 which also occurs for modes above n=2. Similarly, the Flugge
»z theory shows mode behavior convergence in Figures 3.5 to 3.7 above £&=30, .
s ]
fﬁ such that the relationship between the two theories above £=30 for all ¢
& '
§ mode orders should be represented by Figures 3.19 to 3.21. )
L 3.8 Forced Motion of a Shell In Vacuo )
f‘ Assume the shell in vacuo is harmonically excited by a point
" force applied radially outward at the origin of the form
r
0 Fr :
% fd(x,e,t) =7 §(xR) 8(8) exp(-jwt) (3.16) :
%
such that

D) \
‘ F ,
Y £.(5,8,t) = = 8(8) exp(-jut) ¢
: d 2 )
) R (]
P V
o where F. is the force magnitude, and w is the driving frequency. In
k)
:‘ matrix notation, the equations of motion, Equations (2.20), become :
‘ ]
; (1] - % (1]) (%) = (F) (3.17) |
9

[}
" where the force matrix is given by

V ) i

L
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(Fl=F_ |0 , and F_ = (3.18)
nii N 2npR?

is a nondimensional modal force. (M] and (X] have been previously

defined, and [I] is again the identity matrix. An applied axial or "

- .

circumferential force would generate nonzero elements in row 1 or 2 of

the force matrix. A distributed load would yield elements which were a

function of mode order or axial wavenumber. The specified system has a

modal solution given for n»>0 by

fiyofip3 = iy, - 2°)

K .

! G (&) = jF -

) n B get([f] - 9 [1)) 3

3 .
- - o s 2

: . my, - ( - Q)

; 9 (5) - p 12113~ 123 I;n (3.19a) b

A det([M] - @° (1)) o

! i

) L

' ~ 2, ~ 2 ~2 y

' T I L Sl 3

; n T Get((f] - ¢ (1])

For the axisymmetric mode, VO(E)ao and

~2
X ~ . ™3
0 Un(&) = -3 F )
, 0 0 = YN ) v
: (M) = )myy - @7) - my5 Y
i (3.19b) !
P Y \

@ () = F it

r 0 0 7= T - 7 2 _
(my, - ) (my, - QF) - myy N

In general, the determinant of the cocefficients can be written as

det([f) - % [1]) = slge . 5294 + 3392 +s, (3.20)

where the sj were previously defined in Equation (3.5). An eguivalent

form is given by
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Ve

;.':,

= 2 6 6 4 4 2 2 3
det((M] ~ Q" [I]) = s5,(Q" ~ an) + 5,(9° - an) + 55(Q° - an) (3.21) o
A

with an taken as any of the natural frequencies of the shell in vacuo. !
P

Let us now define a spectral modal mechanical impedance for the W

shell as Y
DF p.c h D_ (&) !
Z_ () = O . 2B x where X__ = =% . (3.22) B .

sn ~juf_(E) ¢ ‘“en sn Ngn(®) x

o

o~

Y

which is purely reactive for an undamped shell. Note that the dimen- 4
sional form of the transformed displacement has been used. This will be 5{
a useful definition for the fluid-loaded problem. Further note that R
7

an(i) is not related to the transform of the driving-point impedance of )
N

the shell, since multiplication (and division) in one domain is repre- v
3

sented by a convolution in the transformed domain. In this sense, the "y
K

nomenclature is artificial. However, zsn(E) does represent the total

contribution of the shell to the fluid-loaded problem and, in that

sense, is analogous to an impedance. The normalized reactance Xsn(E)

e
2L

acts as a normalized spectral stiffness that is defined by polynomials

in Ez given by v
i
D, (8) = det((fi] - & (1)) for n>0 e
~ 2., =~ 2 ~2 8
- (mll -Q )(m33 - Q%) - myy for n=0 (3.23a) 4
iy
and M
‘F
~ 2, ~ 2 ~2
Nep(&) = (my, - @ Nmyy = 97) - my, for n>0 3
~ q,
-y, -2 for n=0 (3.23b) f\
Y
at fixed, normalized, driving frequency Q. In general, these components t‘
.
L

P :
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can be written as

Dsn(i) = alia + a2£6 + a3E4 + a4£2 + ag
(3.24)

A .

4 2
Nsn(E) = b1£ + bza + b3

NN D

where a. and bj are constants dependent upon n, 2, 8, and y and where

. )
% al-blao for the axisymmetric mode. 4.
? . At high frequency the normalized shell spectral stiffness é
b function can be approximated by :
A
. limit X_(£) = B(E2+ n?)%- @2 . | (3.25) o
D Qo sn
. s
N I1f we define an effective structural wavenumber as 3
| 5
; ko= l£2+ n’ 3
v
: then the high frequency approximation can be put into a form analogous ;
L to the plate impedance function but where the higher mode order nature :;
’ of the shell has been preserved. The functional relationship expressed ‘
; by Equation 3.25 is also valid for either large axial wavenumber or mode &
; order at any frequency.
: The transformed displacement solutions to the forced vibration :
s problem given by Equations (3.19) could be introduced into the displace- N
.: . ment relations given by Equations (2.22). For each displacement, the ;
: denominator of the inverse Fourier integral would be Dsn(E). If the 2}
é integration were carried out over the complex &~domain, the roots of 5
: Dsn(&), which are the shell branches, are seen to represent the poles of E
' the problem. For fixed @, each mode would contain eight poles repre- E

senting both the positive and negative wavenumber spectrum. At driving

N - . P s P W P - - . -
1 U 0%,1%,) MG e A A A g U A SR R R T S T P R AR It \‘§
y . n ' X X . Y A n x . . . Y N . S f - ) . - - L, " ) o A A\ - wy of
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frequency less than the cutoff frequency of ocne or more branches, some
of the poles would be complex. Second-order poles and complex-conjugate
poles may also exist. The total solution would be given by the double
sum of the residues over all of the mode orders.

Only radial vibrations can radiate energy into an inviscid fluid
medium. Therefore, the acoustic field generated by a vibrating shell
will be dependent only upon the shell’s radial motion. If fluid loading
upon the shell was not considered, such as for a low-density medium like
air, then this radial displacement would be given by Equation (2.22) for

a shell in vacuo as

wix,8,t) = w .. Z: €, cos(né) J —EELJES-dE exp(-jwt) , (3.26)
n=0

-

written in terms of the normalized shell stiffness. The term

Fr

(21R) %D

fref =
is a convenient normalized reference displacement. Since an acoustic
field cannot create surface tractions, the effect of including fluid
loading upon the shell will be only a radial effect. As will be seen,
fluid loading will reduce the number of real branches from three to one,
and this remaining branch will be a deformed version of the flexural
branch in vacuo. 1In addition, the concept of a cutoff frequency will
become more generalized to include the dual concept of a cutoff wave-

number. These topics will be covered in the next chapter.
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Y Chapter 4 !

VIBRATION OF A FLUID-LOADED CYLINDRICAL SHELL ,

4.1 Introduction
This chapter will discuss the vibration of a shell in the pres-

ence of an external fluid. Important mathematical preliminaries will be

: introduced that are required in the next chapter where Cauchy’s tneorem &

i and integral formula are used as a solution of the acoustic pressure %

‘ field. Boundary conditions at the shell-fluid interface and at infinity ;é

are used to specify a spectral modal specific acoustic impedance that Fﬁ

; modifies the in vacuc integral representations of the radial displace- ;€

. ment and the transformed acoustic pressure. Unlike the in vacuo case, Ei
i

the addition of fluid loading requires that both the radial displacement v
field and the acoustic pressure field be dependent upon a radial wave- f?
number that is a multi-valued function of the axial wavenumber. Con-
cepts of branch points and branch lines are introduced to force single- :
" valued behavior. The behavior of the normalized spectral modal acoustic §
) radiation impedance is presented over the entire complex radial wave- M&

number domain. Physical and mathematical reasons are presented to favor

Sy eoE_wy -
= 5

the choice of the Sommerfeld branch lines for this problem. Existence

¥ properties of the singularities are developed. The location and behav- $
ior of both real and complex sinqularities of the fluid-loaded problem f
are presented. Their behavior is compared to the in vacuo branches of éT
free vibration. For circumferential mode orders greater than one, the i?
real branch of the fluid-loaded problem has a finite bandwidth defined A
% by both a lower and an upper cutoff frequency.' As mode order increases, )
, )
: N

S
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this bandwidth decreases such that above a critical mode order no real A
1"

branch exists. i
o

4.2 The Acoustic Loading Term X ':j
\

Assume the shell is externally surrounded by a fluid medium of ;&

O]

characteristic acoustic impedance pc. A harmonic point force directed 2
radially outward is applied to the shell in the manner discussed in ::~
4“_“-
Section 3.8 for a shell in vacuo. The internal region of the shell is :ff
again taken as a vacuum such that acoustic energy is only radiated T
externally into the fluid. The acoustic pressure field is governed by ':',':i
B 03.,
the wave equation :‘;:::
o

o2 1 3 (4.1) .

p(rlelxlt) = p(rlerxlt) . 9

R c2 atz 3
in normalized coordinates. The normalized Laplacian operator is related ; ,‘Z
!.?. 3

to the un-normalized operator by vz = RZ(VR)Z where R is the normalizing -
=

constant taken as the middle-surface radius of the shell. Therefore, in N
R

e

normalized cylindrical coordinates I
o

2 2 2

(vt e w2 (Lt 2, (4.2) Y

ar 38 Ix ;'n.

A
3

)

For time harmonic excitation, the governing equation can be written as :"J&
- - A
(v§ + R%2%) p(r,0,x) = 0 (4.3) !
g
where T
k = = . ]

Rw/C ch/c (4.4) o

N

is the normalized acoustic wavenumber. E';
\l

&b

Equation (4.3) can be solved by first taking the Fourier trans- ®
form in the axial coordinate and then assuming a separatioﬁ-of—variables %‘
o
¢

X
Had
N

B B A T I R R

bht " B At 0 f
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solution [e.g. Morse and Ingard (1968)]. The transformed acoustic

pressure would generally be given by

5 T (1) b (ou2 (n] [T (4.5)

B(r,6,E) = [an( 08 (vo) + py0E) (v0)] :
’ meo -0 m m mn cos(me)

with & the normalized axial wavenumber. Parameter vy is a separation-of-

variables constant which represents the normalized radial wavenumber and

is subject to the constraint
v oaktog? (4.6)

The infinite Fourier series representation is due to another separation-
of-variables constant which has been restricted to integer values by
continuity considerations on the circumferential coordinate. The inte-
gers m represent mode orders and, as in the case of shell displacements,
the transformed acoustic pressure is expressed as the sum of modal con-
tributions. The functions Hél)(yr) and HLZ)(Yr) are Hankel functions of

the first and second kind defined by Abramowitz and Stequn (1972) as

1 .
H; )(z) = Jm(z) + 3 {m(z)

(2)

B

(z) = Jm(z) -3 Ym(Z)

where Jm(z) and Ym(z) are Bessel functions of the first and second kind
of argument z and order m. In order to account for a logarithmic singu-
larity in Ym(z) at zero argument, the y-plane will be cut along the neg-
ative real axis so that -n<arg(y)<+n defines the principal valued branch
of the Hankel functions. Parameters am(ﬁ) and bm(E) are coefficients to
be determined from the boundary conditions.

In addition to the constraints on the separation~of-variables

constants vy and m, implicit boundary conditions exist which can also be

- '~'\"‘(\J
- -

\r.'~‘.'v'%r_.(\f\r"f\-:\-r_{' -'\I_ Lo

nd

,"f‘)'-‘” e

5"7
<



85

applied to the solution as given by Equation (4.5). The first of these
concerns the circumferential dependence of the pressure field. Since
the acoustic field is due solely to the radial vibrations of the shell,
the pressure field must have the same circumferential dependence as the
radial vibration distribution, namely cos(m®). The radiation condition
also serveé as an implicit boundary condition. For harmonic excitation
of the form exp(-jwt), the large argument approximation of the Hankel
function of the first kind represents energy propagating outward for an
implied positive sign associated with the square root of Equation (4.6).
Conversely, the Hankel function of the second kind represents energy
propagating inward. 1In the absence of acoustic sources other thah the
vibrating shell, the field in the surrounding homogeneous medium of
infinite extent can contain only waves propagating outward, or b,(&)=0

and

B(r,6,8) = Y a (&) B (ve) cos(me) .
Me=O

For brevity the Hankel function of the first kind will be denoted simply
as Hm(z), except in situations where ambiquity might occur with the
function of the second kind.

The unknown modal coefficients am(E) can be found by application

of the continuity-of-particle-velocity boundary condition

3 13
pR 3t w(9,x,t) = i?r_p(rlelxlt)
at the normalized outer radius of the shell a. In normalized transform—

ed variables, this condition becomes

2,2 - I
onQ w(g,8) = 37 p(r,8,8)

- L . e e MLt c . g - e e
o . P e T N A N AR .
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evaluated at r = a. By introducing Equation (4.7) for p and the trans-
form of Equation (2.13) for w, multiplying through by cos(n6), integrat-
ing 6 over 0<6<2n, and applying the orthogonality condition given by
Equation (2.15), we yield the modal relation

W_(&)
a (E) = pcl@?~B— (4.9)

The prime notation designates the derivative of the Hankel function with

respect to its total argument such that
¢ 3
H (z) = 3z Hn(2)

The transformed acoustic pressure at any point in the fluid medium is a
known function of the transformed radial displacement of the shell.
It will be convenient to define a spectral modal specific

acoustic impedance as

P &) H(yr)
me(yr) - ——————— = jock ——— (4.10)
-JuRA_ (&) v H (va)

which represents the contribution of the fluid to the problem. Let us

also define a normalized spectral modal acoustic radiation impedance as

Hm(wa)
Zam(y) - — (4.11)
Y Hm(va)

such that at the shell Zenlvd) = jpckZam(Y). The transformed acoustic

pressure could now be written in the form

B(r,6,&) = -jck ) 2 (vr) W (&) cos(me) . (4.12)
m=(
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The inverse Fourier transform of this expression would be valid at all
points in the fiuid medium and will be extensively discussed in the next
chapter. the transformed acoustic loading on the cylindrical shell

would therefore be given by §a(e,a> = p(a,8,&).

4.3 The Fluid-loaded Characteristic Equation

In the absence of an applied force, introduction of the acoustic
loading term 56(9,2) into the transformed equations of motion of the

shell, given by Equation (2.20) yields

((f] + (A ]) (%] = %(R) (4.13)

where [M] remains the shell stiffness matrix defined by Equation (3.2),
[ﬁf] is the fluid reaction matrix, and (X] is the transformed modal

deformation matrix. The fluid reaction upon the shell is given by

3 0 o0 0
= |0 0 0 (4.14)
0 0 8z
where
2.2 Q?
A= pci94mD = 2 (4.15)
p ph

and D is the normalized extensional rigidity of the shell. 1In the

deviation of Equation (4.13) the orthogonality condition was used to
equate shell mode order n and the fluid medium mode order m.
Equation (4.13) can also be written in terms of a characteristic

matrix (A] such that

P - ° (11 J{X] = [A] ( (4.16)

((M] + (& X] =0

£

is also a function of

where {I] is again the identity matrix. Since Zen
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88
frequency, neither Equations (4.13) nor (4.16) are in the canonical form f’:
W
of the eigenvalue problem. In any event, it is more physically reason- :ft
able to cunsider the values of £ that are solutions of Equation (4.16) '~
I,f
for real values of frequency. Non-~trivial solutions are given by the “J
P
characteristic equation !
det (A] =0 . (4.17) ]
2]
Recalling that the in vacuo characteristic matrix was Hermitian for all ;;
5
real §, it is seen that fluid loading restricts this Hermitian behavior 2
]
to real values of the axial wavenumber such that £2>k2. Therefore, it e
N
is expected that the free vibration of the fluid-loaded shell will like- kj
sy
wise be restricted to this regime. o
Solutions of the characteristics equation are also important 5,
because they represent the singularities associated with the inverse LYy
’
Fourier integral representation of the forced response of both the shell ‘£
displacements and the accustic pressure field. It is perhaps more By
informative to write the characteristic equation in terms of the trans- .:
formed modal impedance functions zsn defined by Equation (3.22) and Zen :ﬂ
to yield l;
] 4
det{A] = zsn(E) + e, (va) = 0 . (4.18)
.‘
‘
In terms of these impedance functions, the forced transformed flexural
deformation of the fluid-loaded shell is found to be 3
-
[ o
p.c h N
-4 .5SP -1 ~
W LE) = § =g w_ ¢ [2,(8) + 2. (va)] (4.19) ;
R
were w .. was previously defined. Introducing this expression into :f
Equation (2.22) yields o
'
. .
.
(4
by
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+@®
® p.C h j(&-wt)
w(f,x,t) = w €. cos(nd) | j S P £ dg
ref gg% n J Q zsn(E) + zfn(ya)
4
}E (ne) J hhatiad at (4.20)
= W €. cos(ne . .
ref o SR Xsn(E) + AZan(Y)

Likewise, the acoustic pressure field can be written using Equations

(4.19) and (4.12) as

+@
® Z (Yr) ej(ax-wt)
p(r,0,x,t) = p S & cos(ne) fn dg (4.21)
i ref b n an(E) + an(va)
where
Fr
ref ref (ZnR)z

is a convenient reference pressure.

Before solutions of the characteristic equation can be deter-
mined, it will first be necessary to specify the mapping between the
complex vy and & domains. Due to the dependence on H, (yr) in the inte-
grand of Equation (4.21), the pressure relation will place greater
restrictions upon the allowable mappings than would the integral of the
displacement field. The next section will introduce branch points,
branch lines, and Riemann surfaces in order to specify vy as a single-

valued function of &.

4.4 Specification of the Radial Wavenumber

The addition of fluid loading has introduced a transformed radial

wavenumber that is a multi-valued function of . 1If the function vy is
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2

observed along any closed path in the complex &-domain that contains )
either of the points &=+k, it will be found that y is discontinuous with ::
phase shift n upon returning to the starting point. Any point which ?‘
causes such behavior is defined as a branch point. If a second circuit W;
about the branch point were made, the function y would return to its :2
original starting value. Clearly, all points on the complex &-plane ,;
with phase between 0 and 2n are mapped onto one-half of the complex ;ﬁ
v-plane, while those points with phase between 2n and 4n are mapped onto ;i
the other half. In order to re-establish a single-valued behavior and :
continuity, it is necessary to distinguish between these two regions of ;ﬁ
the complex f-domain, each called a Riemann sheet. Their combination is ﬂ%
called a Riemann surface, and a one-~to-one correspondence exists between >
points on the Riemann surface and points on the complex y-plane. ,ﬁ
The branch points represent peoints at which the two Riemann ’

sheets are connected. It can alsc be shown [e.g. Carrier, Krook, and e
Pearson (1966)) that branch points always occur in pairs and that for ‘
‘ every finite branch point, a branch point also exists at infinity. 1In ﬁf
order to force vy to be a single-valued on each Riemann sheet, a cut can ;
be made between each pair of branch points and the two sheets joined ;4
along this cut. Any path which attempts to cross this discontinuity $
would be transferred to the other Riemann sheet. Such a barrier path is hﬁ
called a branch line. 1If a branch line is formed between each finite o
branch point and a branch point at infinity, the branch lines would be E{
continuous since in the theory of complex variables infinity is consid- 5
ered to be a single point. t:
If the radial wavenumber is specified in some region of the com- E:

plex &-domain, analytic continuation can be used to specify vy everywhere fa
on the Riemann surface. In considering the integrand of the inverse a,
2
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Fourier integral representing the acoustic pressure field, two physical
constraints are helpful in specifying vy and choosing branch lines. The
radiation condition requires energy to decay to zero at infinity. The
causality condition requires that energy propagate outward from the
source at the origin.

Let us begin by specifying vy at the end points of the integration
path such that both conditions are satisfied. Assume fluid damping is

present such that
k = kr + )ki, £ = Er + jai, and y = Yo+ 3y -
For negative time harmonic excitation it can be shown [e.g. Skudryzk

(1971) p. 32] that both kr and ki are positive. At the integration path

end points

T
y =[-8 + 23k K, for £ = £_= 1=

such that |y| = [§ [ and arg(y) equals +n/2 for the positive square root
and -n/2 for the negative sguare root. Recalling the inital formulation
of the acoustic field solution, Equation (4.5), both the Hankel function
of the first and second kind were present. From the large argument ap-
proximation of these functions, it is obvious that if the radiation and
causality conditions are to apply at the end points, then the function
of the first kind must be associated with positive square rcot while the
function of the second kind is associated with the negative square root.
The choice of which pair to use is arbitrary. 1In keeping with conven-
tion, the positive square root has been assumed.

From this definition of y at the end points of the real integra-
tion path, the radial wavenumber can be analytically continued through-

out the complex f-domain. The choice of branch lines will uniquely
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define how we wish the analytic continuation to be applied. In theory,
any path connecting pairs of branch points is an acceptable branch line.
Often physical arguments are used to restrict the choice. For example,
a branch line connecting the two finite branch points at &=i+k along the
real axis (or any other direct path) does result in a single-valued
behavior on each Riemann sheet, even for paths which enclose both branch
points (and the entire branch line). However, it can be shown that the
integrand does not obey the radiation condition along this branch line
and that in the presence of fluid damping the branch line breaks the
integration path along the real axis. For either of these reasons, this
particular branch line would be unacceptable for our problem.

The proper, or Sommerfeld, branch lines are chosen on physical
grounds because along them the integrand obeys both the radiation and
causality conditions. For large r, the Hankel function of the first
kind must be restricted such that 0<arg{y)<n/2 if both the radiation and
causality conditions hold. This is equivalent to statinq that the phase

of 72 must have a value between zero and n, or

2(k k- E &) ] <n

-1 r-i
0 < tan [kz_ 72
r i r i
This relationship will be true for all krkigirii for both kr and ki pos-
itive. The boundary of this region is equivalent to the condition of
zero Im{y} and is defined by

ErEi =k ki (4.22)

r

which is recognized as a rectangular hyperbola in the first and third

quadrants, see Figure 4.1(a). We see that on this boundary
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(a) with fluid damping X

(b) without fluid damping

Figure 4.1. Proper, or Sommerfeld, branch lines; (a) with fluid Py
damping, (b) without fluid damping. .
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2 2 2 2
Y= Jkr ki - &+ &
Therefore a second requirement exists that
2 2 2 2

which is the region between a pair of equilateral hyperbolas with foci
on the Er axis for kr>ki (assumed). At a branch point, the inequality

becomes an equality, and the branch point is given by the intersection

of these two pairs of hyperbolas, or &=k, as expected.

The addition of fluid damping results in the branch points rotat-
ing away from the real axis in a counter-clockwise manner. The singu-
larities of the inteqrand can also be shown to rotate similarly when
fluid damping is included. 1In the limit as ki»O, the branch points
return to the real axis, and the branch lines take the form of the
classic L-shaped cuts, as shown in Figure 4.1(b). If structural damping
is included in the shell through a complex elastic modulus, the singu-
larities of the integrand again will rotate in a counter-clockwise
direction from the undamped case. However, the acoustic wavenumber k
will remain unchanged such that structural damping will have no effect
upon the branch points or branch lines.

If we also consider the inverse Fourier kernel ejEx also present
in the integrand, it is required that for both the radiation and causal-
ity condition to hold both Er and Ei must have the same sign as x. Now
it is clear that the branch point in the first quadrant is associated
with positive axial distance and the branch point in the third quadrant
is associated with negative axial distance. This implies that for x>0

the contour integral should be closed in the upper half-plane of either

Riemann sheet of the complex {-domain, while for x<0 closure should be
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in the lower half-plane. The proper, or Sommerfeld, branch lines would
be given by Equation (4.22) in the region defined by Equation (4.23), as
shown in Figure 4.1(a). Since the Riemann sheet that consists of points
in the complex &-domain with phase between zero and 2n maps onto the
upper half of the complex y-plane, this sheet will be called the top
Riemann sheet. Likewise, the other Riemann sheet will be called the
bottom Riemann sheet. The mapping between the vy and & domains is shown
in Figure 4.2 for the top Riemann sheet. The phase of y would be nega-
tive on the bottom Riemann sheet. Note that the phase of y is undefined

at the branch points.

4.5 The Normalized Spectral Modal Acoustic Radiation Impedance

The normalized spectral modal acoustic radiation impedance Zan(y)
arises in problems governed by the wave equation in cylindrical coordi-
nates. Many authors have studied this function for real or imaginary
argument. An excellent example is Junger (1953). These studies are
valuable when performing numerical integration along the real axial
wavenumber axis or in some far field approximations. For problems that
involve deformation of the integration path into the complex &-domain
where vy is also complex, such as steepest descent approximations or the
formal Cauchy integral solution, the general behavior of Z_ () is of
interest. The behavior of the acoustic radiation impedance also pro-
vides rigorous mathematical grounds for choosing the Sommerfeld branch
lines.

Branch lines are used to specify v as a single-valued function of
§. From a purely mathematical perspective, any branch line between two
branch points is acceptable. One may choose whatever path is convenient
for the particular problem at hand. Although physical reasoning was

employed in the last section to select the Sommerfeld branch lines, this
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was not a mathematical requirement. However, the choice of branch line )
will obviously effect the ease of mathematical solution or numerical
simulation. Because the Sommerfeld branch lines coincide with the

boundary between regions in which Zan(y) exhibits "good" and "bad"”

e

e

behavior, they are superior to other possible branch lines. This ﬁ

3 dividing line is the real y-axis. In the upper half-plane, Zan(y)

behaves nicely. It possesses symmetry and a monotonic behavior. The

- -

bad region, the lower half-plane, contains all of the poles and zeroes .

-

of the function. By using the Sommerfeld branch lines, we can confine

k our analysis to the region in which Zan(y) is 2asiest to evaluate. ﬁ
] ]
v With the branch line associated with the logarithmic singularity !
- .l
- of the Hankel function taken along the negative real y-axis, Zan(y) is
y conjugate symmetric in the upper half-plane about the imaginary y-axis. s
s,
! For a general point Yo in the first quadrant %
1Y, * ]n = * J
¢ Zanlvge™ ) = 2 (vg) (4.24a) Y
¢ ]
>
f where the asterik denotes the complex conjugate. The proof is
) Hgl)(voa) Hél)(yoejne_Jn) !
p ZanlYo) = T DT T Ty, 3nn :
‘ an 1 -
" Yo Ho (Yoa) Yo Hn (Yoe e °) g
[y : : 't
p (2) -jn (1), =* jn .
.. Ho ' (v® ) B HiW' (vpe”)
(2)' -jn (L)'=, * jm, ° .o
» Yo Hy'o (g2 ) Yo Bn (voe” ) s
1 3
A <
¥ (l
'y By taking the complex conjugate of this relation, Equation (4.24a)
; results. Care must be taken to assure that the argument remains on the .
" . . . . . :
principal value branch -n<arg(y)<n. Analytic continuation relations 4

from Abramowitz and Stequn (1972) were employed in this regard. This J

symmetry property will greatly ease the search for eigenvalues of the

- -
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X characteristic equation. A lack of symmetry in the lower half-plane can
he similarly demonstrated. Similar reasoning can be used to show that

for 0<arg(y)<n the spectral modal specific acoustic impedance obeys the

’
Eﬁ symmetry property

K

5 2o (veed'r) = - 2g (vr) . (4.24b)
K

$ Abramowitz and Stegun also discuss the locations of the complex
. zeroes of both the Hankel function of the first kind and its derivative.
s Excluding the point at the origin, both Hn(ya) and H;(ya) are analytic

3 everywhere in the complex f{-domain. Therefore, zeroces of the acoustic

% radiation impedance coincide with the zeroes of the Hankel function.

% Excluding points at infinity, these are confined to the lower half-

g' plane. Likewise, poles of Zan(y) will coincide with the zeroces of the
&: derivative of the Hankel function, which again are confined to the lower
;? half-plane. In the limit as y approaches the origin, zan(y) remains

;a nonzero and finite for all n>0. Only for the axisymmetric mode does a
i logarithmic singularity exist at the origin. Since Zan(v) is analytic

everywhere in the upper half-plane, by the maximum modulus theorem,

X Zyn(Y) must also be monotonic in this region with its maximum modulus

s ¥

Ry occurring on the boundary. It can easily be shown that for the axisym-

metric mode the maximum modulus of Zan(y) in the upper half-plane occurs

%; ' at the origin. For n>0, the maximum modulus in the upper half-plane

&: occurs between n~1 and n on both the positive and negative real y-axis.
; ’ Constant phase and modulus contour plots in the complex y-plane

f:; of the acoustic radiation impedance Zén(Y) are shown in Figures 4.3-4.5
o for the n=0, 1, and 2 modes. The symmetry, monotonic, zero, and pole

behavior discussed is clearly demonstrated. Aan infinity of alternating

poles and zeroces exists in the lower half-plane extending along the neg-
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ative real axis. The contrast is striking between the smooth, bounded

3
* behavior of Zan(Y) in che upper half-plane and its rapidly changing,
y singular behavior in the lower half-plane. These figures strongly
s
j indicate why contours of integration should be avoided that include any
" portion of the lower half-plane. The computational routines used to
R calculate Hankel functions of complex argument were developed at the
-
5 Naval Research Laboratory and are described by Mason (1983).
U
: By using the various asymptotic expressions for the Hankel func-
¥, tions found in Ambramowitz and Stequn, asymptotic approximations of the
B
: specific acoustic impedance an(yr) and the acoustic radiation impedance
#
“ Zan(ya) can be developed. These will prove useful throughout this
f chapter and the next. At large argument
§
)
: limit 2. _(yr) = j .EEB_F{ [ 4n2_1 _ 4n2+3 } -5 } ej(r-a)v (4.25a)
- 1 fn v r ( 8yr 8va
hy limi .1 1 . 5
N imit 2_ (y) = == ¢ 39 + j . (4.25Db)
. o an vy ] 2va
:u
- The axisymmetric mode has the small argument approximations
n
h‘ limit Z..(yr) = jecka {In vyr - j n/2} (4.25¢)
% 0
" limit 2_(v) = a (In va ~ j 1/2) (4.25d)

>0

and

, 2n
h - . 1 @\" . n " ™ (ra

limit Z_ (yr) = -jpcka { = 1=] + 3 { =+ | 1= (4.25e)

e 2, Lo (9% @)

‘
h': 2n
:' limit Zan(y) = -a {%4- ] _2_717 (l%] } (4.25f)
~ 0 (n!)
A
K for higher mode orders.
)
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4.6 Existence Properties of the Singularities

The singularities of the integrand of Equation (4.21) can be
found by solving for the zeroes of the characteristic equation in the
complex &-domain. Since the choice of negative time harmonic excitation
and the sense of a positive axial direction are arbitrary, physical
reasoning indicates that the singularities must exhibit both symmetry
and duality properties. Let us begin by investigating the existence
properties of real and imaginary singularities.

In the complex &-domain, characteristic Equation (4.18) repre-

sents the two constraint equations

Im{zsn(a)} + Im{an(ya)} = 0 (d.26a)

and

Re{Z n(i)} + Re{an(Ya)} =0 (4.26b)

S

Since the shell impedance is a function of EZ, for both real and
imaginary &

Re{an(E)} = 0,

For imaginary &, arg(y) will have a value of 0, -n, or -n depending upon
which side of the branch line and which Riemann sheet is of interest.
If we consider the analytic continuation relating the Hankel functions

of the first and second kinds, constraint Equation (4.26b) at imaginary

H (ya)
Im { ? } =0
H (va)

n

¢ requires that

or

Wwronskian {Jn(ya), Yn(ya)} = 2/(nya) =0 (4.27)
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be true. Equation (4.27) is valid only at infinite frequency or axial :é
wavenumber. The former case is not of practical concern and the later :h
case is not a solution of constraint Equation (4.26a). Therefore, T
purely imaginary singularities cannot exist on either Riemann sheet. }.?
Along the region E.Z<k2 of the real axis, arg{y) again has a value ﬁﬁ

of either 0, +n, or —n. The problem is essentially that just discussed .é
except that Equation (4.27) is now valid only at infinite frequency, ?é
- which again is not of practical concern. Therefore, real sinqularities . $
with magnitude less than the acoustic wavenumber cannot exist on either ;é
Riemann sheet. : §§
The existence of any other real singularities is also important Zg

since they will comprise the residue contribution at most field points. 2
On the top Riemann sheet, arg(y) = n/2 for the region Ez>k2 of the real fg
axis. Along this region, the specific acoustic impedance becomes 3€
o

2 (veIV2r) - § 22X K‘,‘(z” (4.28)

v K. (ya) ¥

where ¥ is taken as a magnitude and the phase term has been explicitly E:
shown. The function Kn(?a) is the modified Bessel function of the ;%
second kind of integer order n and with real argument ya. For positive :2
real argument, the function Kn and its derivative are real. Therefore, h%
constraint Equation (4.26b) is identically satisfied, and real singular- g,
ities may exist sabject to constraint Equation (4.26a). In the next o
section these real singularities will be located, and their behavior k'
will be discussed. Note that the real singularities must always appear :’
in positive~ and negative-valued pairs. ::
On the bottom Riemann sheet, along the region £2>k2 of the real ::

axis, arg(y) has a value of -n/2 and the specific acoustic impedance is

LT ) T LTI .
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where the function Kn and its derivative are no longer real. For nega-
tive real argument, K, has an imaginary component proportional to the
modified Bessel function of the first kind I.- Introducing Equation

(4.29) into constraint Equation (4.26b) can be shown to require that

-1
(?a)‘z{[xr',(?a)]2+ [K;l(?a)]z} -0 (4.30)

be true. Equation (4.30) is wvalid at'infinite &, which is not a solu-
tion of constraint Equation (4.26a), or when y is zero. Therefore, real
singularities cannot exist anywhere on the bottom Riemann sheet except
at the branch point.

It can also be demonstrated on physical grounds that this result
is correct. With negative time-harmonic excitation, a real singularity
on the bottom Riemann sheet would represent energy propagating inward
from infinity. This is physically not possible. This behavior also
points out the duality between Riemann sheeﬁs based upon the time har-
monic excitation chosen. At large radial distance the Hankel function
of the second kind is porportional to exp(-jyr). Therefore, for posi-
tive time-harmonic excitation, a real singularity on the bottom Riemann
sheet would correctly represent outward propagating energy. The real
sinqularities which previously existed on the top Riemann sheet would
now be found on the bottom Riemann sheet.

The location of the complex zeros of Equation (4.21) is a formi-
dable task which can be facilitated by determining the symmetry proper-

ties of both the complex zeros and their residues. Instead of locating
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i
the complex zeros of the characteristic equation as given, let us solve Jf
("‘
the related problem of finding the complex points at which the magnitude W
)
of the impedance terms in Equation (4.21) are equal. Since the specific :a
‘f
acoustic impedance is non-symmetric on the lower Riemann sheet, let us ﬁ
3
restrict the discussion to the top Riemann sheet where 0<arg(y)<n. 'w
)
For a general point El located in the first quadrant, points 'w
\J
symmetric about the real and imaginary axes can be defined such that %
d:
(3
- * Jn - jn = * ..'
&y = §e7, &y = &7, and &, = & b
(03
»
Noting that the shell impedance function an(a) contains terms of the ?ﬁ
form Ezm, it is easy to show that g.
4
* ‘C'::
Zsn(82) = Zgn(8g) = = 2540810, and  Zo,(83) = 255(8)) . o
3
?
{
Observation of Figure 4.2 indicates that the radial wavenumber exhibits &
the symmetry property !
o
x jn W
Y(&) = v(Ey) = v (§)e’",  and  v(&) = v(§)) Y
‘
The symmetry property an(y*ejnr) = —Z;n(yr) of the specific acoustic )
.
impedance has been discussed previously. Since the magnitude of a com- $
plex quantity is equal to the magnitude of its conjugate, the complex W
zeroes of the characteristic equation must be symmetric about both the n
real and imaginary axes. Therefore, it is sufficient to restrict the o
. ¢
search for complex singularities to any one quadrant. N
L
4.7 Location and Behavior of the Real Singularities bi
Restricting the discussion to the region £2>k2 of the real axis :;
{
of the top Riemann sheet where arg(y)= n/2, the location of the real N\
)
singularities can be found by analyzing the characteristic equation. qﬁ
~l
o
&
\
I\‘
N
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§| This equation can be written in terms of the normalized shell stiffness
%

5

e components and the normalized acoustic radiation impedance as

2

',°‘ - Jn/Z .

e Dsn(a) + 0 Nsn(E) Zan(y e ) =0 (4.31)

where the acoustic radiation impedance has the form of Equation (4.28)

%; and is real, negative, and monotonically decreases to zero value at .

%{ large arqument. The variable y is taken as a magnitude with the phase

& term explicitly shown. As was done for the in vacuo case, the location -

lﬁ and behavior of the real frequency spectra can be analyzed by using

ég asymptotic approximations. The large and small argument approximations

m of the acoustic radiation impedance are given by Equations (4.25). The

k‘ shell stiffness component Dsn(i)is a fourth order polynomial in 52.

g‘ The component Nsn(a) is a second order polynomial in 62 and is positive

;5 in the region of interest. Most of the algebraic details will be

ﬁ omitted from the discussion.

ﬁ; The axisymmetric (n=0) mode has a zero cutoff frequency and non-~

Zm dispersive behavior at small axial wavenumber where the small argument

X approximation of the fluid impedance is valid at all frequencies. The

ﬁ frequency spectra is given by

i

g 2 = (c g/cp)2 (4.32)

'21 which is actually valid into the transition region between small and

;E large axial wavenumbers. Thicker shells exhibit nondispersive behavior -

}' up to higher wavenumbers. Fiqure 4.6 shows the calculated frequency

§: spectra for the axisymmetric mode of a steel cylindrical shell in water

:f. for several values of normalized shell thickness. None of the asymptot-

v ic approximations were used in calculating Figure 4.6 or any other fre-

1? quency spectra. Numerical root-finding algorithms searcheé the entire E

'!. .
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Figure 4.6. Effect of thickness variation upon the real, positive
frequency spectra for the n=0 mode of a steel shell in water.
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frequency spectra of interest. The approximations were used only to
verify and interpret results.

At large axial wavenumber, either of the large or small argument
asymptotic approximations or the general expression given by Equation
(4.28) may describe the specific acoustic impedance depending upon the
relationship between £ and k. However, it is possible to show that at
all mode orders only when &=k are real singularities possible. For
lower frequencies, the shell impedance is much greater than the specific
acoustic impedance, and roots are not possible. It can be shown that

for the axisymmetric mode at large axial wavenumbers where

2 (c/cp)z gl (4.33)

the frequency spectrum is again nondispersive and described by Equation
(4.32). The frequency spectrum is continuous up to infinite frequency
and wavenumber. ~The acoustic radiation impedance is approximated by
Equation (4.25d) at both small and large axial wavenumber.

In the transition region, the acoustic radiation impedance
becomes smaller until it is proportional to Y—l. For wavenumbers in the
upper portion of the transition region, DSO(E) dominates NSO(E), and the
real roots are approximately those of the flexural branch of the shell
in vacuo. 1In the lower portion of the transition region, the behavior
is more complicated with the shell stifnnes component NSO(E) becoming
more of a factor. The effect is to cause the real branch of the fluid-
loaded shell to occur below that of the shell in vacuo. This is true at
all real wavenumbers, not only for the axisymmetric mode, but for all
mode orders. By comparing Figure 4.6 with the in vacuo data presented
in Figure 3.14, it is seen that the effect of fluid lcading on the n=0

mode is to translate the flexural branch downward and to confine it to

.
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the region €2>k2. As in the in vacuo case, the real branch remains
continuous from a zero cutoff frequency up to infinite wavenumber. As
expected, neither the longitudinal nor torsional branches have a real
counterpart in the fluid-loaded case.

As with the shell in vacuo, the first beam mode (n=l1) of the
fluid-loaded case has a zero cutoff frequency. However, unlike the
axisymmetric mode, the behavior at small axial wavenumber is dispersive
with a frequency spectra given by

(l‘llz)ﬁsh 2

Q= 23;577757_ £° . (4.34)

This is a good approximation of the frequency spectra up to axial wave-
numbers at which the small arqument approximation of the specific acous-
tic impedance is no longer valid. This occurs at approximately ya=0.3.
Using this relation to solve for , it is found that the upper limit of
the dispersive behavior defined by Equation (4.34) is relatively insen-
sitive to variation in shell thickness or material and fluid parameters.
This upper limit occurs at approximately &=+0.3.

At large axial wavenumber, the first mode order is nondispersive
with a frequency spectra described by Equation (4.32). In this respect,
it is similar to the axisymmetric mode at large wavenumber. However, it
can be shown that a frequency exists above which real wavenumbers cannot
exist. Extending the terminology adopted previously, let us call this
the upper cutoff frequency, and let us call its associated axial wave-
number the upper cutoff wavenumber. If we denote the upper cutoff fre-

h

quency of the nt mode order as QE, then it can be shown that

-1/2

U’B

pa 2
Qn 1+ nosh (c/cp) . i (4.35)
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Above the upper cutoff frequency, the frequency spectra enters the com- .;:
|'|‘
plex &-plane. All of the higher order modes will have an upper cutoff B0
frequency. The transition region behaves in a manner similar to that of '»‘
the axisymmetric mode. ,‘:f
oy
Figure 4.7 shows the frequency spectrum of the n=1 mode of the ci
fluid-loaded real branch for various values of normalized shell thick- ':’;',
Ry
ness. By comparison with Figure 3.15 for the shell in vacuo, fluid- fg
0
)
loading has confined the.first beam mode to the region F,Z>k,2 and moved : ,.f;
it downward with respect to the flexural branch in vacuo. This will be S
- i
a characteristic of the frequency spectra at all mode orders. ’5
Figures 4.8-4.10 show the frequency spectra for the real branch O
of the n=2, 3, and 10 modes of a water-loaded shell at various values of g,
normalized shell thickness. As in the in vacuo case, the lower cutoff ;*.
)
frequencies are nonzero for all mode orders greater than one. Denoting ; g
N\
the fluid-loaded, lower cutoff frequencies of mode order n as <, they l{A
n N
can be approximated by 5
Py
]
[}
2 (N
o€ = {8 n(n-1) J[nz AR 2(2+y)6[§g_} (nz-lyz]‘l . (4.36) oy
°s c ed
A .;
9%
The lower cutoff frequencies increase with increasing mode order number, “ﬂ
and as would be expected, the fluid-loaded lower cutoff frequencies are !;F
smaller than their flexural branch counterparts for a shell in vacuo. .:e
[
However, unlike the in vacuc case, the axial wavenumber associated with "::
=)
the lower cutoff frequency is no longer zero, but would be given by 9
-l
e
£E=(c_rc)eS . (4.37) o
p/ n et
l'{.
The behavior of the frequency spectra above the lower cutoff frequency ? .
and wavenumber is relatively independent of axial wavenumber. By com- '*é
;i ."
o
N
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Figure 4.7. Effect of thickness variation upon the real, positive
frequency spectra for the n=1 mode of a steel shell in water.
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parison with Figures 3.16-3.18, it can be seen that this behavior is

The

consistent with that of the flexural branch of a shell in vacuo.

large wavenumber behavior of the higher order modes is similar to the

n=1 mode, except that the upper cutoff frequency is smaller for increas-

ing mode order.

Figure 4.11 shows the frequency spectra for the first eleven mode

The normalized shell thickness is

orders of a steel shell in water.

3 . 0.01. A comparison with the frequency spectra of the flexural branch of

a shell in vacuo, Figure 3.7, highlights the behavior discussed. Also

- -

shown is the real frequency spectra of a fluid-loaded classical plate g
4
]

calculated as

™
X

214

E2_k2

(8ed-1) = 2 .

As an example, see Junger and Feit (1972, pp. 160-62). Fiqure 4.12

shows the dispersion curves for this same situation. If a comparison is

3 made with the in vacuo dispersion curves, Figure 3.10, the effect of A

fluid loading is to decrease the normalized phase velocity and to limit

the real phase velocity to finite values at low wavenumber. The maximum

real phase velocity would be the acoustic velocity c. The normalized

group velocity is plotted against axial wavenumber for the water-loaded

Similar data is presented in Figure 3.13 for the

shell in Figure 4.13.

flexural branch of a shell in vacuo. Similarly fluid loading generally

decreases the normalized group velocity from its in vacuo values. Since

the group velocity represents the velocity at which energy is transport-

ed along the shell, fluid loading is seen to reduce the energy flow and

in that sense acts as an added impedance.

If only the real singularities are considered, the cutoff fre-

quency behavior can be used to limit the infinite Fourier series in the

“ 5 "' ‘f‘ .. - I I ‘?.‘f -'_ -* ‘-. I._:.‘.-'. ' -).n ‘-‘-.‘ ‘ -'_"-" ‘."‘_ ,‘y‘,(“ ¢ r( -¢ - 'Q'.;f; v(~'~’~'*’\(."\.- ~¢~r ;e
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Figure 4.11. Real, positive frequency spectra at various mode order
numbers for a steel shell in water with a normalized thickness of 0.01.
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solution of the acoustic pressure, Equation (4.21). The axisymmetric
mode with a zero lower cutoff frequency and an infinite upper cutoff
frequency acts as an all-pass filter. At all driving frequencies, the
axisymmetric mode contributes a residue term to the solution. The first
mode order with a finite upper cutoff frequency acts as a low-pass
filter. Since the upper cutoff frequency decreases with increasing mode
order, at freguencies above the upper cutoff frequency of the first mode
order, the residue term would be consist only of the contribution due to
the axisymmetric mode. The second and higher mede orders have both a
nonzero lower cutoff frequency and a finite upper cutoff frequency.
These higher mode orders act as bandpass filters and contribute only for
driving frequencies within the band. Since the lower cutoff frequency
increases with increasing mode order, at frequencies below the lower
cutoff frequency of the second mode order, only the axisymmetric and
first mode order will contribute to the residue term..

The increasing behavior of the lower cutoff frequencies and the
decreas.ng behavior of the upper cutoff frequencies require that a mode
order exists beyond which no real singularities are possible. This
implies that the Fourier summation of the residues of the real singular-
ities has a finite number of terms. Figure 4.14 is a plot of the lower
and upper cutoff frequencies of a water-loaded shell as a function of
mode order. Several values of normalized shell thickness are shown.
The curves were computed by requiring &=k in the impedance relations of
te characteristic equation for mode orders greater than zero. The
acoustic radiation impedance was taken as its small arqument asymptotic
expansion which is exact at zero argument. The resulting polynomial was
solved for its real roots using Laguerre’s method. At any driving

frequency, all mode orders to the left of the curve will contribute a
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Figure 4.14. Effect of shell thickness variation upon the behavior of
the lower and upper cutoff frequencies versus circumferential mode order
number for a steel shell in water. Continuous curves are shown for
convenience only.
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residue term. It can be shown that the maximum allowable mode order at
which real singularities can exist, denoted as Moy OCCUrLsS when nm=E=k.
is given as

In terms of the parameters of the shell and the fluid, D ax

the truncated integer value of

1,2
MNax = (c/cp) (3B) cosY (4.38)

where Y is the principal angle calculated from

3pc
1 -1
Y = 3 cos [ 73_5] . (4.39)

S

Since D rax is an integer, a small band of frequency exists at which the
maximum number of modes contribute a residue term. The center frequency

of this band is

Qmax = (c/cp) nmax (4.40)

which represents the maximum allowable lower cutoff frequency and the

minimum allowable upper cutoff frequency for the fluid-loaded shell.

4.8 Location of the Complex Singularities

The complex singularities have been very difficult to locate.
Although analytic techniques are helpful in a global manner, due to the
complexity of the characteristic equation they are inadequate to deter-
mine specific singularities. Analysis can be used to define regions in
which singularities cannot exist, such as on the imaginary axis, or to
define the properties a singularity must possess if it is to exist in a
region. Analytic methods are also useful in determining symmetry
properties that allow the search toc be confined to a portion of the two-
dimensional space. However, generally the actual location of the singu-

larities can only be determined by numerical ﬁethods.
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Numerical methods can generate ambiguous results whenever the

=)
T STt N

problem has employed branch lines to assure that all functions are

-

single-valued in the space of interest. Since all machine algorithms

:
$| represent angular measure as modulo 2n, association of a point with a ;
f, particular Riemann sheet is not numerically possible without the use of }-
K complicated tracking algorithms. Wwhen possible, an easier approach is

%; to work in a variable space in which the characteristic equation is i
3 represented by a single Riemann sheet. For our problem this would be Y
y the radial wavenumber y. Therefore, the complex roots of the character- ‘
§ istic equation written in terms of y were located and then transformed f
‘% into axial wavenumber. The phase of y makes the association with a é
- particular Riemann sheet obvious. )
% A problem common to all numerical search methods is choosing the 4
:ﬂ proper point or points at which to begin the search. Most search meth- :
. ods are local methods and require the starting point to be reasonably :
. close to the zero of the function in order to yield correct results. A "
? general partitioning of the space of interest often leads to confusing {
! and erroneous results. A method which eventually had some success was A
§ based upon the postulation that since an infinite system has a continu-

ﬁ, ous wavenumber spectrum, each branch must also be continuous. This is :
! another way of stating that as frequency is varied, a particular vibra- 3
y tory mode decays or grows without discontinuity. A consequence of this ;
'5 postulation is the expectation that all vibratory modes must have a 4
s response at all frequencies, even though the response may rapidly decay o
N or be very small. 1In particular, each branch must touch the zero 0
;3 frequency plane at exactly one point in the complex y and ! domains. :
; Otherwise, the particular vibratory mode would not remain a single- X

valued function of frequency. Frymoyer’s calculations for. a shell in
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vacuo as well as Stuart’s (1972) results for a fluid-loaded plate both A
confirm this postulation. Nothing in this discussion precludes singu- ';

larities of order greater than one or the concept of branch splitting. L

At zero frequency, the specific acoustic impedance is identically }
zero, and the characteristic equation degenerates into the shell imped- -§
i ance zsn(i). Ignoring the roots at infinity, the characteristic equa- i
tion further degenerates at zero frequency into the shell stifness com- A
ponent Dsn(a). These roots were used as starting values in a numerical :E

search for complex singularities. ;i

i The roots were mapped through the complex plane by iterating upon ﬁ%
frequency. In the appropriate regions, results were verified using the bt

| asymptotic approximations of the specific acoustic impedance given by [f
! Equation (4.25). The resultant polynomials were solved by standard ;:
procedures. Even when a reasnnable starting point is known, numerical ,:

problems associated with the search method may prevent a valid numerical ;%

T solution in certain parametric regions. A classical example is the EA
failure of Newton’s method in the region where the derivative of the i

function under evaluation approaches zero. For this reason, several b‘

g search methods must often be employed. The most successful approach was o
2 a generalization of the secant method due to Muller (1956). 1Instead of '%
linearly approximating the root based upon two initial approximations, f'

; Muller used three initial approximations and fit a parabola to estimate ?
; the root. Unlike the linear secant method, Muller’s generalization will ;5
i converge on a complex root even when real initial approximations are ?j
used. 1In this respect, Muller’s method is ideal to study the behavior »

| of the complex branches in the vicinity of the lower and upper cutoff i~
frequencies where the real roots enter the complex plane. The specific *f

X implementation of Muller’s method used was algorithm ZANLYT of the IMSL ';
i ~
3
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Py

(1982) library. Like Newton’s method, both the linear and parabolic ‘:ﬁ
secant methods can fail in regions where the derivative of the charac- 2}
teristic equation approaches zero. Another method employed was a bisec- :
tion method adapted to the complex plane by Dubbelday (1983). Although §§
this method will always converge to a root, the convergence can be quite N
slow compared with Muller'’s method. &y
At zero frequency, one nonzero y-root exists in each quadrant for ‘ s*

both the axisymmetric and n=1 mode. This root has a large magnitude and . g?
as frequency increases the root initially moves toward the origin and iw
then asymptotically approaches either the real or negative imaginary -gﬁ
axis as fréquency continues to increase depending upon whether the root %ﬁ
is respectively in the upper or lower half-plane. The roots in the if
upper half-plane are symmetric about the imaginary axis. Although the 5»3
roots in the lower half-plane are not theoretically symmetric, at large % ;
magnitude their behavior is quite similar such that they are also essen- 4
tially symmetric about the negative imaginary axis. ti-
Each root in the y-plane is represented by two rcots on a single ¢ E
Riemann sheet of the &-domain. The frequency spectra in the top Riemann Zﬁ
sheet of the fZ-domain associated with the upper half-plane y-roots is EF
shown in Figure 4.15. These frequency spectra are symmetric about both “1
the real and imaginary axis of the top Riemann sheet. The branch nomen- “5
clature convention used for the shell in vacuo is not appropriate in the : ig
fluid-loaded case since all known branches exhibit predominantly radial jkﬁ
motion at large §. Instead let us associate the zero frequency inter- ' .%ﬁ
cept of the fluid-loaded branch to the complex extension of the real in ;:i
vacuo branches at zero frequency. That is, the zero frequency roots of i:ﬁ
the shell stiffness term Dsn(E) are recognized as the complex singulari- %:'
ties of the shell in vacuo as presented by Frymoyer. On this basis the .‘w“
‘.:.‘A
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0.01. Frequency is indicated at various points along the complex
branch.
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frequency spectra of Figure 4.15 can be associated with the in vacuo
longitudinal branch and are therefore designated as branch L. As also
shown in Figure 4.15, branch L1 exists for mode orders greater than the
first. By performing a large mode order asymptotic expansion of the
impedance functions, it can be shown that branch Ly exists for all mode
orders. Aithough couglex roots on the bottom Riemann sheet are not of
direct interest and therefore not graphically presented, their behavior
is to asymptotically approach the real &-axis as freguency increases.
For mode orders greater than one, a second root exists in each
quadrant of the y-plane at zero frequency. The upper half-plane roots
represent the zero frequency intercept of the complex extension of the
real branch below the lower cutoff frequency. Since this zero frequency
intercept can also be associated with that of the flexural branch in
vacuo, this branch is designated as Lj. The behavior of branch Ly on
the top Riemann sheet below the lower cutoff frequency is shown in
Figure 4.16 for n=2 and 3. Frequency is indicated at various points
along the spectra. As can be seen, the complex singularity remains in
the vicinity of its zero frequency intercept over most of the fre miency
range. Like branch L. complex branch L, is symmetric about both the
real and imaginary &-axes. Consequently, at the lower cutoff frequency
the complex extensions in the first and fourth quadrants merge and con-
tinue out along the real axis. Similar behavior occurs for the complex
extensions in the second and third quadrants. The behavior over the
real axis was previously described in Figures 4.6 through 4.14. At the
upper cutoff frequency the branch Ly splits to form the complex exten-
sions shown in Figure 4.17. As frequency increases to infinity the
complex extension of Ly above the upper cutoff frequency asymptotically

approaches the real axis again.
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Figure 4.16. Frequency spectra of complex branch L., below the
lower cutoff frequency for the n=2 and 3 modes of a~steel shell
in water with a normalized thickness of 0.0l. Frequency is
indicated at various points along the complex branch.
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Figure 4.17. Frequency spectra of complex branch L, above the
upper cutoff frequency for the n=2 and 3 modes of a steel shell
in water with a normalized thickness of 0.0l1. Frequency is
indicated at various points along the complex branch.
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Chapter 5

CAUCHY’S THEOREM SOLUTION OF THE NEARFIELD ACOUSTIC RADIATION

FROM A HOMOGENEOUS FLUID-LOADED CYLINDRICAL SHELL

5.1 Introduction

This chapter will discuss the Cauchy’s theorem and integral for-
mula solution of the acoustic radiation from a point-excited cylindrical
shell immersed in a homogeneous fluid medium. 1In the last chapter, the

radiated acoustic pressure at any point in the fluid was found to be

+®

P(r,6,%) = P ¢ Y &, costne) [ (&) eI ar (5.1)
n=0 »
where
G () - an(Yr) ) Hn(Yr) AZan(Y) 5.2)
n Z(8) + 2o (va) - B (val X_(8) + 82 (v)

Both the radial wavenumber y and the behavior of the specific acoustic
impedance zfn(yr) were specified by using the Sommerfeld branch lines.
The major difficulty in obtaining a solution of Equation (5.1) is
the evaluation of the inverse Fourier integral. If a numerical integra-
tion is performed along the real axis, real singularities of the inte-
grand will obviously cause severe numerical difficulties. A technique
which is sometimes used to deal with this problem is to add a small
amount of damping to the system in order to move the singularities off
the real axis. However, the value of the numerical integration remains

heavily dependent upon the contribution of the integrand along that por-
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tion of the real axis nearest to the now complex singularity. In this
sense, real singularities usually dominate any numerical integration
process. The value of the integral is also a function of how close the
integration path comes to a singularity, that is, the amount of damping
added to the system. A technique sometimes employed is to calculate the
value of the integral numerically for several damping values and then
numerically or graphically extrapolate a value for the zero damping
limit. Unfortunately, the results from this method can sometimes be
very dependent upon the damping values chosen.

Numerical integration can élso have problems with accumulated
round-off error, with convergence in the truncation of the infinite
inteqration range, and with mesh size selection. A successful numerical
integration, especially for integrands with the ccmplexity of ours,
usually requires quite a bit of investigation intc the behavior of the
integrand as well as attention to computational detail. 1In the end,
numerical integration yields a number, and only by repeated parameter
changes can any of the relationships which govern the radiated acoustic
pressure field begin to be known. A more informative approach is to
investigate the problem analytically and to utilize numerical integra-
tion only for those portions of the solution which cannot be further
solved by analytic methods. However, along the way, numerical investi-
gation is often a useful adjunct tc the analytic methods.

The integral can be evaluated analytically by extension into the
complex &-plane and use of Cauchy’s theorem. This method is exact if
all of the singularities can be found and their residue contributions
calculated. Additionally, the contribution of the path of integration
through the complex plane must be found. This chapter will develop the

various parts of the Cauchy theorem solution and discuss their behavior
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as a function of the parameters of the problem. Asymptotic technigques

will be employed where appropriate. Both the shell displacement field

and the nearfield acoustic pressure will be calculated.

5.2 Cauchy’s Theorem Formulation of the Pressure Field

Cauchy’s theorem states that the integral of a function between
any two points is independent of the path linking those points if the
function remains analytic along the path. If the path is closed then
the integral would be zero. Therefore, the integration along the real
axis in Equation (5.1) could be replaced by another path in the complex
plane along which, hopefully, the function Gn(E) has some simple form
and the integration is more easily performed. Since the integrand func-
tion Gn(E) is known to contain singularities, Cauchy’s theorem can only
be used if some multiply connected region is defined that excludes these
singularities.

Unfortunately, along the interior paths necessary to exclude the
singularities, G (§) will not be a simple function. However, by intro-
ducing Cauchy’s integral formula, which relates the integral of a func-
tion over a closed contour to its value at a point inside that contour,
the integrals over the interior paths can be solved. Formally, it is

given by

- =1 [ G(z
G(z,) = (2n3) §—-—Lz_zo dz (5.3)

which is written in its more popular form as

§g(z) dz = 2nj . residue(z ) (5.4)
m

~here z, represents the first order singularities of g(z) enclosed by

the contour, and residue(zm) stands for the residue of g(z) evaluated at
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z=Z . The residue of a first order singularity is defined as the coef-
ficient associated with the term (z-zm)_l of the Laurent series expan-
sion of g(z) about the singularity Z- The left-hand side of Equation
(5.3) therefore represents the residue of the function G(z)/(z-zo) at
the singularity z=z . Green'’s theorem is a higher order manifestation
of Cauchy’s integral formula.

If a very small amount of propagation loss is introduced into the
acoustic medium, then a possible contour of integration in the complex
§-domain is shown in Figure 5.1 where circular contours Cl and C2 exist
at infinite radius. The contour of integration around the branch line
is designated by paths Iy, Ty, F3, Ty and rs. The original path of
interest along the real axis from minus to plus infinity is designated
as path R. The contour shown is valid for x>0 and the integrand is

single-valued everywhere. Closure in the lower half-plane for x<0 would

. yield identical results. By use of both Cauchy’s theorem and integral

formula we can write

§ G, (&) L 4t = J + J + J + I +
R C1 fl TZ

e

+j+_[+fcn(a) eI& g
r, T, C

3 2

= 2nj ) residue(g) (5.5)

where Gn(é) was previously defined.
Over paths C;, and C, the magnitude of & is infinite. For [E]

large, it can be shown that

limit G (&) = 0(€ e )
| &)

which implies Gn(E) approaches zero uniformly in the limit. If a simple

translation of axis & = k+e is introduced it can also be shown that
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Figure 5.1. Closed contour of integration for x>0 on the top
Riemann sheet of the complex E-plane. Branch points and branch
lines are shown for a very small component of acoustic propogation
loss. The phase of vy is indicated in various regions of interest.
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limit G_(¢) = 0(1)
e]-0

which is applicable to the integration along path r3. Application of

Jordan’s Lemma in these two asymptotic regions indicates that

[ aqt®) 3% ag = [ 6 (8 e3™az = [ 6 (8) 3™ ae - 0 (5.6)
1 2 I3
such that
[ eyt ¥ de = 20y T resiqverry) - [0 3% ar (5.7
m
R B

is the desired integral. The integration over the real axis is thus

replaced by an integral evaluation around the branch line, given by

Jcn<a) & d£=I+J+J+JGn(E) I g5 (5.8)
B r, T, T, T

and by the contribution of the residues of the integrand at the singu-

larities Em located in the upper half-plane of the top Riemann sheet.

5.3 Evaluation of the Branch Line Integrals

While the use of Cauchy'’s integral formula obviates the numerical
integration along the real axis where the integrand has singularities,
the method does introduce new integrals along the branch lines. On a
modal basis, the total branch line integral consists of the four seg-
ments rl, rz, r4, and rs. Let us treat them as pairs such that integral
Bln(r,x) consists of segments Fl and rS along the imaginary axis, and
integral BZn(r,x) consists of segments F2 and r4 along the real axis

where 0<f<k. The branch integral contributions to the radiated pressure

field would be given by
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B,(r,8,x) = p_¢ rg) €, By, (r,x) cos(ne) (5.9a)
B,(r,8,x) = P ¢ ng(]) €, By (L,x) cos(n®) . (5.9b)

Recalling that neither imaginary sinqularities nor real singularities
with a magnitude less than the acoustic wavenumber can exist, then the
integrands of both Bin and B, must be analytic. Although the branch
line integrals can generally only be solved numerically, their analytic
behavior would justify using Cauchy’s theorem over numerical integration
along the real axis if the singularities of the problem were known.
Furthermore, in certain asymptotic limits of interest, an analytic solu-
tion of the branch line integrals exists.

Let us begin be evaluating integral Bon along paths Tz and r4
where the axial wavenumber is real. By noting that along segment rz the
radial wavenumber has a phase of n and a zero phase along segment P4, as
shown in Figure 5.1, and by introducing the symmetry property of the
specific acoustic impedance function, Equation (4.24), integral an can
be placed in the form

k
an(Ei%) = jc (8) 3% ag - jqn(a) 1™ ae
T*Ty

(5.10)

where

zfn( vr)
fn( ya) - ZRE{an( &)

*
=

For zero structural damping the shell’s

an(vr)
g) + Z¢n(va)

(E) =
Qn [an(i) + 2

and where y has zero phase.

spectral mechanical impedance is imaginary and Qn(&) reduces to the form
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4
[} {
¢ !
-* () = =23 Im {G_(&)} . (5.11)
N Y J n '
¢ q
4 The integral Bon is complex at all field points except where the axial
X d
L . N N N N N t
:{ distance is zero and it is imaginary.
i: Although the solution of branch line integral BZn must generally !
" be found numerically, an analytic solution is available in the nearfield '
g~ at low frequency. 1In this limiting case, the specific acoustic imped- ’
? ance can be approximated by its small argument limit over the entire ;
"y ‘

integration path. Furthermore, at low frequency the shell’s normalized -
R ;
f stiffness function is only weakly dependent updtn the axial wavenumber ,
Y i
0 and can be approximated by ]
iy !
5 1 for n=0
b . {5.12)
‘i limit X_ (&) = { 2 3
R @0 o sn®- 12~ (n? + 1(F " for w0 )
) :
8, ' \J

Introducing these approximations into Equation (5.10) yields
.
E: k |
) Linit B, (r,x) = A [ (& - €)™ 3™ qe (5.13a) :
N 20 2n n Y
W 0
* r-a
s where ﬁ
) n n n n

n._(a - (& a 2 v

~ ey (6 (N .
; n (n!) (v, - an] 2
9 sn J
4 ]
: for n>0. The integral has solution
R k o »
5 2 _ 20 & g o [IK (2% = g
& J (k &) e d& 2x { x] (nd) { Jn+l/2(kx) * ) n+l/2(kx) } |
¥ 0
.t |‘
0 where Jn+1/2(kx) is the half-order Bessel fungtion {spherical Bessel
& function) and §h+l/2(kx) is the half-order Struve function of real
) »
D

3

Iyt

1
\

RV - . . . Y ) A% )
] () () o) Y, % K 2, A LS Rl L TR L LT - [ maw i w e o
Fo b A P N L R B R TS S R v DO AN S e, "" s 5 v, . . . e G TN O g




- e

SR 0 8 6

T R TN (2 v B avh alh ~vh AV et v vas Qe
M) 9.0t han'd, WU W COW gt gCava sty gt M W Bl Ve R W L O tath ata” sl (a0 o84 als®,

138
arqument kx. For the axisymmetric mode
.. ejkx -1
limit Bzo(r,x) = Ao I (5.13b)
20 ]
r-»a
where
AO' _jsan da In(rr/a) - 12.
[1 + 8a 1ln(ka))
For zero axial distance
k
limit B, (r,x=0) = A f (k% - 4R df  for n>0 (5.13c)
@0 <0 n
0
r»a
where
k
2n+l n
2 2.n k {n!) 2
j (k™ - &7)7dt = 1e3e50ceces (2n+1)
0
while
limit B,.(r,x=0) = A K (5.13d)
0 20 0
r-+a

for the axisymmetric mode. The low frequency solutions represented by
Equations (5.13) would be valid for field points such that kr is small.
In the numerical evaluation of integral sequences as represented
by Equation (5.9), two important considerations generally are integrand
convergence along the path and modal convergence of the series. Since
the integration interval of Bon is finite, integrand convergence will

not be of concern. The modal convergence behavior of the series can be

assessed by introducing the large order approximations
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Limit X__(8) = 8(n%+ £9)% - o (5.14a)
noe
limit Z_ (y) = - 2 {1 + j(%@)zn} (5.14b)
now  an n n
n 2n n n
. . ajfa 1l .(feya a T
l;ﬂit an(yr) = - jpck n {(z) + 5 j(zn ] {(z] + (a] ]} (5.14c)

where e is the base of the Napierian logarithm taken as 2.718--- and
n>eyr/2 has been assumed. At large order, the shell stiffness function
has the same asymptotic behavior as exhibited at high frequency.

Introducing these relations into Equation (5.11) yields

wial@ @] -2 [0 @

Limit |Q (8)] = | £ (512 - —— |. (5.15)
> ke -5+ () (BB

For fixed axial wavenumber, d’Alembert’s ratio test would yield

(&)
iimit 91‘2%—&—)— -~ limit o(n"%) = 0.
n-ow Qn o

Therefore, for large n, the integrand function Qn+l(E)<Qn(E) for all &<k
and the Fourier series is uniformly convergent.

The numerical algorithms used to generate Bessel functions are
based upon recurrence and asymptotic relationships that are numerically
correct only within parametric regions of argument and order. Although
limitations are sometimes due to the algorithm itself, often problems
arise from machine limitations on precision or exponent range. In order
to avoid the numerical difficulties associated with these limitations,
it is generally preferable to perform the Fourier series summation

within the integral. Since Q is both continuous (since it is analytic)
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)
: b
A and uniformly convergent, Bromwitch (1959) has shown that ﬁ
: 3
by ) K
% B,(r,8,x) = Y. & cos(n®) I (£) 3% ag
s AR Pref n Qn
) n=0 0 )
; (5.16) '
' k
. JjEx
. Prag | Q(r,0,8) &% at
. 0 ‘
N where
b 3
P @® N
v Q(r,8,&) = 3, € Q (E) cos(nd) = ¥ e Q (&) cos(nd) ;
: n=0 n=Q )
K ha!
i, 0
7 Figure 5.2 shows a numerical evaluation of the modal truncation value N N
: as a function of axial wavenumber for r=a and o=0 at @=1, 10, and 100. 3
~. \
i The numerical data is compared with an estimate N=va+l0 based upon W
§ {
¥ uniform convergence criteria. The numerical data represents the mode :
¥ order at which the last five mode orders each contributed less than 0.2%
o to the modal sum.
)
1 Generally both the acoustical farfield and the region close to <

the cylindrical shell are of interest while the intermediate region has

€

little practical application. The farfield is logically defined in >

s

A terms of acoustical wavelength as is done in specifying the Fraunhofer

(a/r<<1 and kaz/r<<l) or Fresnel (kr>>1) zones., However, the practical

;; scale of importance for the region close to the cylindrical shell is the %
;f . cylinder outer radius a. Although the theory developed has been for an Q
; infinitely long cylinder, real structures are generally on the order of A
! 10 cylindrical radii or less in length. Also sensing equipment and !
' decoupling treatments are usually located within one cylindrical radius

i from the surface. Therefore, the region a<r<2a and x<10a will serve as A
; a practical definition of the nearfield. %
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Figure 5.3 shows the contribution of branch integral Bz(r,e-o,x)
to the nearfield acoustic pressure for 9=0.1 in the plane 6=0 using the
analytic relations (5.13). The prediction is presented as contours of
the pressure amplitude in dB referenced to Pref plotted in one dB incre-
ments. This fiqgure is compared to Figure 5.4 which was computed numeri-
cally using Equation (5.9). The agreement is rather good. Figures 5.5
through 5.7 show results for @=1, 10, and 100 but where a 10 dB contour
increment has been used. Note that a coincidence effect is apparent in
the high frequency results. For the nominal parameters used in this
study, the normalized plate coincidence frequency is 28.36. Therefore
for 2=100 a coincidencé angle would be expected at

$=sint | % = 320
Q
from the normal to the plate (or cylinder) surface. Figure 5.8 expands
the @=100 results out to a radial distance of 10a using equal scaling
factors along the r and x axes. A beaming effect is clearly shown at
the coincidence angle.
The integral B, can be evaluated in a manner similar to integral

B Again referring to Figure 5.1, we see that along segment rl arg(y)

2n’
is n while along segment rs the radial wavenumber has zero phase. Also
noting that along paths rl and FS the axial wavenumber is imaginary, we

can write

l(rx)-jcm ejb‘dhjo(;a)ea‘d& (5.17)

I+Ty

where the radial wavenumber has zero phase and the symmetry properties

of Equation (4.24) have again been used. The integrand function Qn(ja)
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320

Figure 5.8. Constant magnitude contours of B,(r,6=0°,x) in
the acoustic nearfield calculated using Equatfon (5.10) and
expressed in dB re p for Q=100 with radial distance
expanded to 10a. ThéeSlate coincidence angle occurs at 32°
from the normal.
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is defined as

Q,(38) = -2 Im (G_(38)} (5.18)

where Equation (5.11) can be used to define Im{Gn(jE)} using the

interpretation

v = VK2 £2 . (5.19)

Unlike integral Bons integral Bip will be real at all field points.
Modal convergence of the integrand function Qn(jE) can be demon-
strated in a manner similar to Qn(é) except where the radial wavenumber

now has the form of Equation (5.19). D’Alembert’s ratio test would

again yield

Q. ., (38)
limit |20 L 1imit o(n”%) = 0
e | 38 oo

and the Fourier series is again uniformly convergent at large mode

order. As before, we can write

B1(£,0,%) = prog T &, cos(no) [ Q38 &7 at
0
= Pot J Q(r,8,j8) e & ar . (5.20)
0

Figure 5.9 shows a numerical evaluation of the convergence mode N as a
function of axial wavenumber for r=a and =0 at @=1, 10, and 100. Again
the numerical data is compared with the estimate N=ya+1Q. Due to the

form of the radial wavenumber, it is expected that N would increase with

increasing axial wavenumber, as is shown.
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Since the integration interval is semi-infinite, the requirement
to consider more and more modal contributions as the integration vari-
able increases would normally lead to an untenable numerical situation.
Fortunately, the integrand converges well before modal convergence is a
serious issue. Since modal convergence occurs when the arqument va is

approximately equal to the order n, for large axial wavenumber where &>k

k
and & p
2_ (58) = o(gd)
sn
-1.1/3 -2/3
Zan(y) = O(y £/ 7)< &
such that

Q(38) = o( J—‘; a‘se“"}

at all field points. Convergence will be faster for lower frequency,
larger axial distance, or greater radial distance.

As before, integral By, can generally only be solved numerically.
However, if the axial distance is large, an analytic solution is possi-
ble based upon Laplace’s method. This method states that if the inte-
grand function Qn(j£\ is reasonably well behaved and analytic at the
origin, as x increases the largest contribution to the integral will
come from the vicinity of the origin due to the strength of the decaying
exponential term. The integral can therefore be approximated by its
behavior near the origin. Examination of Qn(ji) indicates that, except

at low frequency, it is a smoothly varying function near the origin with

a small (or zero) slope. By expanding Qn(ji) into a Taylor series about
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§=0, it is found that

T T : 2, _
[o 38 e ™ ae= | [Qn(O) +£Q(0) +50 (0 + ... [ ar
0 0

- xTg (0 + x5 (0) + xQ"(0) + ... . (5.21)

Since both y and Z, are even functions of the axial wavenumber, all of
the odd ordered derivatives of Q, are identically zero when evaluated at
zero, yielding

[ou30 ™ ae =1 o 0 + 59 (0) + 5 0
0 X X
For large x and smoothly varying Qn(ja), this series can be truncated
after the first term, yielding

Limit By, (/%) = L g (0 (5.22)
where y can be replaced by the acoustic wavenumber k in the evalution of
the inteqgrand function. For additional discussion of the method, refer-
ence is made to Carrier, Krook, and Pearson.

Figures 5.10 through 5.13 show a nearfield evaluation of branch
integral Bl(r,e-O,x) in the plane 6=0 for @ = 0.1, 1, 10, and 100 using
a numerical evaluation of relation (5.20). As was done with integral
By, the predictions are presented as contours of pressure amplitude in
dB referenced to Pref in 10 dB increments. Also shown by dashed lines
in Figures 5.11 through 5.13 is a prediction based upon the analytic
solution at large axial distance given by Equation (5.22). The analytic

solution is a good approximation for x>a except at low frequency.
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p 5.4 Residue Contribution of the Real Singularities

- - -

I . L} k] . I3 (]
3 As was mentioned earlier, the residue of a first order singular-

ity is the coefficient of the negative first power term in the Laurent

R expansion of the integrand about the singularity. For an integrand that 3
g. is the quotient of two functions, such as Eguation (5.2), Hayek (1980) 4
f gives the residue about the singularity Eo as ‘
.

2 Zgq(ve) &I

residue(&o) = evaluated at § = Eo . (5.23)

]
S [ 2nt® + 20va)]
This relation assumes that the singularity is of order one such that the ‘

denominator is nonzcro.

Evaluation of the residues of both the positive and negative

Clery

valued pair of real singularities can be performed by considering the

-

Cauchy Principal Value of the inteqral alcag the real path R. In order .

‘ to assure that the formulation represents a progressive wave solution

E the indentation about the negative valued singularity must lie above the
real axis while the indentation about the positive real singularity must
lie below the real axis. For further details see Skudrzyk (1971, pp
46-48, 651-56). Only the positive valued singularity would be included
within the closed contour of integration and would therefore contribute
to the solution. Alternatively, a small amount of structural damping

y could be included that would cause the singularities to rotate slightly
2 in a counter-clockwise manner. Since the pcsitive valued singularity
would move into the first quadrant of the complex &--plane, and the neg-
ative valued singularity would muve into the third quadrant, again only
the positive valued singularity would be enclosed by the closed contour .
of integration and would consequently have a residue contribution. In /

: the limit as the damping goes to zero both methods would yield the same
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result. Therefore, at most a single residue contribution due to real
singularities exists at a given mode order, where the total contribution

to the pressure field is given by

N
Res(r,8,x) = p ¢ 2, €, R (r,x) cos(n®) . (5.24)
n=0
i The infinite Fourier series has been truncated due to the cutoff fre-

quency behavior discussed in Section 4.7 and shown in Figure 4.14. The

modal contribution can be written as

; K (vr) 2nj x__(8) I
: R (r,x) = (5.25)
n K_(va) 2 '
nrak | n g k2 (e - x. (g) - 28R
I 2.2 sn sn 2
Y a Y
j evaluated at_&=£o. In the derivation of this equation, the relation

an(i) = —zfn(ya) at EaEO which defines the singularities has been used.

| Since £°>k, the radial wavenumber is now taken as a magnitude, or

) and the alternative forms of the specific acoustic impedance given by
Equation (4.28) have been introduced.

Since the modified Bessel function of the second kind is a mono-
tonically decreasing function, the residue of a real singularity will
) represent a wave propagating in the axial direction and decaying in the
1 radial direction. This decay will be very rapid for all modes except

the axisymmetric and can be approximated by

R = o[l % e’Y(r‘a)J iarge y for all n

Rn = O[[%Jn J small y for n>0.
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B
X
et -
$ This second relation would be true for r<y 1, beyond which the decay
@ would become even more rapid. For the axisymmetric mode the radial
W decay is on the order of .
\J
0 '
;* R, =01+ In r small y
M 0 In v
&
o
j which is very slow except in the farfield. 1In general, the axisymmetric
b 4
) mode would be expected to dominate the residue contribution of the real |
W . ‘
singularities in the farfield.
: The behavior of Res(r,8=0,x) in the nearfield is shown by Fiqures ;
o g
,: 5.14 through 5.17 as contours of constant magnitude in dB referenced to 3
. Pref for normalized frequency of 0.1, 1, 10, and 100. The radial decay
X
j} discussed is shown. At frequencies above the plate coincidence frequen- !
. A
Qﬁ cy, the real residue contribution takes the form of axial standing waves '
P v ]
~, that add little to the acoustic field.

5.5 Residue Contribution of the Complex Singularities

Of all of the complex singularities whi.lh exist, only those above

>4
=
-

the real axis on the top Riemann sheet are of interest. As was shown in

‘./ |
h the last chapter, complex singularities must exist as a pair symmetric \
%

L; about the imaginary axis. For a complex singularity in the first quad- (

. rant of the complex &-plane denoted by

»

’ .

o : .
‘j E1 Er+ ]Ei :
' ,-
» such that :
o vp = (&) = v+ Oy 3

3 the residue wculd be given by Equation (5.23). If the symmetric singu-

: larity in the second quadrant
‘:’ ~
L% y
~,
>

-

o
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‘ i
is also considered, it can be shown that v
h(
. . * "
re51due(E2) = -residue (El) \:
%

such that the sum of the pair is

residue(&l) + residue(iz) = 23 Im{residue(al)}

The sum of the symmetric pair of complex singularities would yield an A

imaginary result.

- 4
A

On a modal basis, the pair would have a contribution fﬁ
3.
. r
H(vr) NG Ae 3
Cn(r,x) = 4n Im (5.26) <]
H (ya) af | n” _ 2 - _afs ~
n A‘( 2.2 l] Xsn(a) Xsn(a) 2 :c
Yy a Y hatt
L
evaluated at E-El where n/2<arg(y)<n. :
W
Since the residue contribution is proportional to exp(-&ix), com— fﬂ
plex singularities will represent waves that decay axially . At either J
large radial distance or radial wavenumber, Cy will also be proportional L
o
to exp(—yir) and exhibit strong radial decay. As an example, the com— f,
N
plex branch denoted as L1 discussed in section 4.8 would exhibit this i‘
behavior. Complex singularities will contribute little to the solution .x
.
In N

if the axial distance, radial distance, Ei, or vy, are not all small.
general, one or more of these conditions can be expected to exist except

at frequencies just below the lower cutoff frequency and field points

very close to the point of excitation.

the complex singularities will be ignored.
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5.6 Nearfield Acoustic Pressure

Examination of the previous results reveals that for frequencies
below the plate coincidence frequency the magnitude of the real residue
contribution dominates the branch line integral contributions by at
least 15 dB at all field points shown. This result is also valid for

nonzero 6. Therefore, in this region the acoustic pressure can be
approximated by

N
p(r,8,x) = Res(r,8,x) = p__¢ > e, R (r,x) cos(n®) (5.27)

n=0
where the much more complicated expression given by Equation (5.1) has
been replaced by a finite series. Therefore, Figures 5.14 through 5.16
also represent the nearfield pressure. As can be seen, the pressure
magnitude maintains a value within 20 dB of the driving-point pressure
over most of the acoustic nearfield.

At frequencies above the plate coincidence frequency the near-
field pressure is dominated by the branch line integrals, primarily B,.
Figure 5.18 shows the acoustic nearfield pressure calculated at a nor-
malized frequency of 100. The coincidence angle effect and the overall
character are similar to the results shown in Figure 5.7 for B,. Note
that except for the coincidence beam region, the magnitude of the near-
field pressure is at least 30 dB down from the driving-point value.

The surface pressure field is also of interest. Figures 5.19
through 5.22 show the pressure at r=a for @=0.1, 1, 10, and 100. The
circumferential coordinate ranges from zero to n and the pressure field
is symmetric about the 6=0 plane. Although not shown, the real residue
contribution dominates the surface pressure field at frequencies below

the plate coincidence frequency while the branch line integrals, again
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primarily By, dominate the field at higher frequencies. For frequencies =
below the plate coincidence frequency the surface pressure field main- 0y
tains a magnitude within 20 dB of the driving-point value over most of .
the cylinder surface. At higher frequencies the surface pressure field h

is similar to that for a point-excited plate. 45

5.7 The Fluid-Loaded Displacement Field o

The cylindrical shell’s radial displacement is given in terms of e
integral relation (4.20). The form is very similar to that of the

acoustic pressure and it can be solved by similar techniques. For

oz 0r

+@
w(0,x) = w__ 3;% e cos(ne) j g, (E) eI & gr (5.28)

S

™

where

P

-
L e ol

g_(&) = JospVE L ,
n an(i) + zfn(va) xsn(i) + AZan(y)

sl
b -5

Cauchy's theorem can again be employed to solve the integral, yielding

w(9,x) = res(6,x) - bl(e,x) - bz(e,x) . (5.29) ’

4, 5

)y

The contribution over paths r3, Cy and C2 is again zero by application

-
»

of Jordon’s Lemma.

Pl B

v
1
W KN

The contribution over branch paths r, and Ty is now written as

A
‘

4 8 5 %

K
by(8,%) = w__ g;% e, Cos(ne) j q (&) e at (5.30)
0

2
g

x
Z

where

' pscph an
qn(E) =173 2 o
228 + 2 (8 [2g (va) - zgh ()] -

9.5 t‘; > :_¢

*
(vya) + an(va)
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8 .,
; and where the radial wavenumber has zero phase. For zero structural i
‘ %
B damping q,(&) reduces to A
4

{ qu(8) = =23 In(g (&)} . g
" N
W An analytic solution exists at low frequency that follows the develop- E

ment of Equations (5.12) and (5.13), but where now the constants are

)

-~
-

specified to be

P
-

bdan

A, = -
. 0 [1+ ta1in(ka))?
¥
' 2n
! %0 = (n')g?:: - ta)? 4
0 e
i‘ for n>0. Similarly, the contribution over branch paths Fl and FS can be
.
" designated as
M
X b,(8,x) = w ii €_ cos(n®) I q (&) e & dg (5.31)
\ 1+ ref n n'J '
[~ n=0 0
. where for an undamped cylindrical shell
: q,(38) = -2 Im{g (7€)}
~ with the interpretation
N y = k2+ E2
; §
. As before, an analytic solution of the integral exists at large axial Q
N .
distance based upon Laplace’s method which yields )
- g
: T &x 1 ;
v . - _ L %
. J.qn(]'c',) e dé§ = x qn(O) :
b 0 K
:
1 at large axial distance. .
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The real residue contribution to the fluid-loaded radial dis-
placement field is given by
N

res(9,x) = w__. gg% e, I,({X) cos(né) (5.32)

where the modal residue term
oni ed&
£ (x) = > 2nj e (5.33)
%5 [ g z " l] Xin(a) =~ Xnl®) - g%é
r a Y

is evaluated at the real residue. Again the radial wavenumber has been

implicitly specified as the magnitude

Yy = £2- k2

in the region Eo>k. As was done with the acoustic pressure solution,
the contribution due to complex singularities is considered small and is
ignored in the radial displacement solution.

The normalized cylinder displacement field for driving frequen-
cies of 0.1, 1, 10, and 100 is shown in Figures 5.23 through 5.26. As
would be expected, they display similar behavior to the surface pressure
field. Although the individual contributions due to the branch line
integrals and real residues are not presented, again the residues dom-
inate the solution below coincidence frequency while the branch line

integral b2 dominates the solution at higher frequency.
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Chapter 6

SUMMARY AND CONCLUSIONS

The acoustic nearfield of a cylindrical shell of infinite axial
extent has been examined. The elastic shell is loaded externally by a
fluid medium and internally by an applied harmonic point force acting in
the radial direction. This model is a useful approximation of finite
length structures commonly found in the ocean and for which analytic
solutions are not available. The acoustical and structural behavior of
this simple geometry can provide insight into the mechanisms by which
energy is transported and the parameters that control these mechanisms.
A practical problem of interest might be the characterization of the
self-noise of an acoustic sensor system that is mounted in the vicinity
of an elastic structure which is being mechanically excited by internal
equipment. Green’s function techniques could be used to extend the
results to include any type of distributed mechanical or nonharmonic
loading.

The surface force exerted by water can be comparable to the iner-
tial and damping forces found in a vibrating structure. Consequently
fluid loading can alter the structural response of the elastic shell
from its in vacuo state. The problem is a classical boundary value
problem where boundary conditions at the shell-medium interface and in
the farfield can be used to couple the elastic and acoustic response of
the system. Several methods of approach have been discussed in the
Introduction. The geometry of the problem suggested the use of cylin-

drical coordinates since the boundary surface of the cylinder would rep-

oy N g S , o - o - .
!'-. [N .l...h L W, .'-l.'-“.‘l .la".'o B n.‘.ﬁ A ,..l'. £ .“‘!‘l“,‘c".h‘u.."...'- ..\.,'u‘.'c...- C-.. \.'.: (N X ..-"!\‘ ) .0. 0,079 0%, '0!"'!". (AR ~

ol o e gl

o o &

BN AAY



AN

DR R T N T T P A N T I N N T T M W A R L T R Vb ta k. "abe ‘ot vab val say sy

179

resent a constant coordinate surface. An integral transform technique
was chosen to reduce the governing set of differential equations of
motion into a set of algebraic equations in an axial wavenumber space.
Eigenfunction analysis was used to express the acoustic pressure and
surface displacement fields in terms of a Fourier series of modal con-
tributions over a discrete circumferential wavenumber spectra. The main
effort became the solution of the inverse Fourier integral and the con-
vergence behavior of the modal sum. Various investigators have used
asymptotic methods to calculate the farfield and high frequency solu-
tions. Since the primary interest of this study has been the nearfield
at frequencies below the classical plate coincidence frequency, Cauchy’s
theorem was chosen to solve the inverse Fourier integral. As was demon-
strated in the last chapter, the nearfield solution can be written in
terms of a finite sum of residue contributions from real singularities.
The contribution of the elastic cylinder to the fluid-loaded
problem was written in terms of a spectral modal mechanical impedance.
The Flugge equations were chosen to represent the shell because they
represent a thin shell theory that is also conservative. This was shown
by their development using variational energy methods in the Appendix.
Differences were discussed between thin shell theories, thick shell
theories that account for shear deformation and rotary inertia, and
elastic theories based upon the equations of elasticity. A comparison
between the Flugge theory and an elastic theory due to Gazis indicates
that the Flugge theory is an adequate representation of the shell’s in
vacuo middle-surface deformation for frequencies up to several times the
plate coincidence frequency. At higher frequency, either a thick shell
or thick plate theory wouid be more appropriate. If fluid loading is

included, Flugge theory would be expected to give reasonable results to
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higher frequency than expected for the in vacuo problem since the shell

impedance would represent only a portion of the characteristic equation.

The in vacuo modes of vibration were investigated and shown to
consist of three orthogonal branches that represent coupled motion of
the middle-surface deformation of the shell. Since the eigenvalues, or
singularities of the inverse Fourier integral, control the surface
deformation and acoustic field at low frequency when fluid loading is
negligible, their values and behavior were calculated and discussed.
Although neither the longitudinal nor torsional branches are sensitive
to shell thickness, the flexural branch which has a large radial deform-
ation component was found to be highly sensitive. Therefore, for negli-
gible fluid loading, both the radial displacement field and the acoustic
field would be expected to be sensitive to shell thickness. At high
frequency, the in vacuo branches were shown to behave like simpler
systems such as plates and circular bars. The addition of fluid loading
restricts the free modes of vibration to at most a single mode for each
circumferential mode order. This fluid-loaded branch is a modified ver-
sion of the in vacuo flexural branch and therefore its frequency spectra
is also sensitive to shell thickness.

For in vacuo free vibration, at each circumferential mode order a
cutoff frequency was shown to exist that represents the transition be-
tween axially propagating and nonpropagating waves. At the cutoff fre-
quency the phase velocity is infinite while the group velocity is zero,
thus indicating that at lower frequency energy cannot propagate axially.
A zero cutoff frequency was shown to represent rigid body motion. As
shown in Figure 3.1, the cutoff frequency is higher for increasing mode

order. At low frequency the displacement and acoustic fields will be

-
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influenced by only a small number of modes while at high frequency a
large number of modes would contribute.

The addition of fluid loading increases these cutoff frequencies
and introduces a second, higher cutoff frequency. At frequencies above
this upper cutoff frequency, axially propagating waves cannot exist.
Consequently, each circumferential mode order has an associated free
mode of vibration only over a limited frequency bandwidth in the fluid-
loaded case. As was shown in Figure 4.14, for mode orders above some
critical mode order, axially propagating waves are no longer possible at
any frequency. Unlike the in vacuo Ease, at high frequency the number
of mode orders at which free waves are possible decreases. As expected,
the fluid-loaded cutcff frequencies are sensitive to shell thickness
with thinner shells contributing more circumferential modes to the
shell’s displacement and acoustic fields than do thicker shells.

The in vacuo frequency spectra, dispersion curves, and group
velocity behavior are extensively presented in Chapter 3. At frequen-
cies above the ring frequency, the longitudinal branch of a cylindrical
shell looks much like the longitudinal branch of a plate or bar at all
mode orders. Similarly, the torsional and flexural branches of a cylin-
drical shell behave like the torsional branch of a bar or the flexural
branch of a classical plate above the ring frequency. At frequencies
below the plate coincidence frequency, the classical plate theory and
Timoshenko-Mindlin plate theory yield similar results. Below the ring
frequency, both the axisymmetric and first beam mode of the flexural
branch can be modeled by membrane theory. Above the ring frequency and

at higher mode orders at all frequencies, bending effects dominate the

frequency spectra of the flexural branch.
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The addition of fluid loading and the spectral formulation of the

acoustic pressure field were discussed in Chapter 4. Both physical and
mathematical reasons were given for the choice of the Sommerfeld branch
lines to specify the radial wavenumber as a single-valued function in
the region of interest. The behavior of the normalized spectral modal
acoustic radiation impedance Zan(v) was shown by Figures 4.3-4.5 to con-
sist of two characteristic regions. In one of these regions the func-
tion is monotonic, possesses no poles, and is zero only at infinity. 1In
the other region, the function contains an infinite number of alternat-
ing poles and zeroes, although it is also zero at infinity. The spec-
tral modal specific acoustic impedance zfn(yr) has a similar behavior
except thét it becomes infinite in this second region at infinite range.
The Sommerfeld branch lines are the boundary between these two regions.
Existence properties of the singularities were derived. Since
the characteristic equation with fluid loading is Hermitian only for
|£{>k on the top Riemann sheet, then the real branch must be confined to
this region. Furthermore, real singularities cannot exist at all on the
bottom Riemann sheet and imaginary singularities cannot exist anywhere.
This means that singularities cannot ex:st on the Sommerfeld branch
lines. Consequently, the transformed displacement or pressure integrand
would be analytic on a contour of integration along the Sommerfeld
branch lines. On the top Riemann sheet, singularities were shown to
exist in sets that are symmetric about both the real and imaginary axes.
Two real singularities would comprise a set while a set of complex sing-
ularities would consist of four. Consequently, any one quadrant of the
complex axial wavenumber domain would yield the location of all of the
singularities. On the bottom Riemann sheet, singularities are only con-

jugate symmetric about the imaginary axis, and therefore two quadrants
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of the axial wavenumber domain would be required to find the location of
all the singularities.

Fluid loading was shown to reduce the number of real branches
from three to one. This single real branch can be associated with the
in vacuo flexural branch, except it must exist only between the lower
and upper cutoff frequencies and at a higher axial wavenumber than the
in vacuo flexural branch. At each cutoff frequency, the real flexural
branch splits into two complex branches with a behavior described by
Figures 4.16 and 4.17. The counterpart of the in vacuo longitudinal
branch is a complex branch that is characterized by having a large
radial wavenumber as shown in Figure 4.15. No counterpart of the in
vacuo torsional branch has been found.

The behavior of the fluid-loaded real branch was discussed and
compared to the in vacuo flexural branch. Expressions were developed
that characterize its behavior over various regions of interest and
specify the cutoff frequencies. It was shown that at 2 cutoff frequency
fluid loading decreases the phase velocity from the in vacuo value and
limits it to finite values. The maximium fluid-loaded phase velocity at
any frequency is the acoustic velocity. Similarly, fluid loading also
decreases the group velocity over its in vacuo values. This can be
interpreted as decreasing the rate at which energy is transported along
the cylinder which would be expected when an additional impedance is
added to a system.

Cauchy’s theorem and integral formula were used to evaluate both
the radial displacement of the shell and the acoustic nearfield. The
solution was shown to consist of two branch line integrals and the resi-
due contribution from the real and complex singularities. The residue

from each symmetric pair of complex singularities enclosed by the con-

AL SRR AR

........ o

A R AR RS, \‘E\ BN r"’l:"rr"':zﬂ

e R W

x4

-

-
-

-

A XXM

rd ‘,’ :,“{ .,".. v

T

L 4

vy

s

r

L% A

o AT,
S

e’
2

T L
y

.’"-" l'.’l.

¥

Yoo

A

L h angath o gb e ¢

e

o

EXEY

7%

S Y W
oy T By ':"y’:- 'J. ;

LK

RS

»

e
Y



R W VORI Y ‘..4 30" LA "o

ek ar oyt - LT N N U A TR T TR T R O I o I IR eI

o
184 )
'_
tour of integration was shown to decay both axially and radially such #
that its contribution to the solution could be ignored except very near f;
the excitation point. For frequencies below the plate coincidence fre- ',
quency, the nearfield contribution of the branch line integrals was ’;
found to be at least 15 dB below the contribution from the residue of ;:
the real singularity. Consequently the shell radial displacement and ;;
nearfield pressure can be written as a finite sum of residue contribu- :f
tions. Since the real singularities are not dependent upon field point, EE
a finite set will serve to calculate the field at any desired r, ©, or x ;:
) resolution desired. This is seen as a considerable computational advan- ;
tage over performing a separate numerical integration of the original "
inverse Fourier integral at each field point. Above the plate coinci- ;;
dence frequency, the solution entirely consists of the branch line inte- ?&
grals. The well known high frequency acoustic beaming effect that oc- %Q
curs at the coincidence angle was shown to be due to branch integral B,. i”
The characteristics of the branch line integrals and the residues ,5
were also discussed in Chapter 5. The modal contributions to both B, ?:
and B, were shown to be uniformly convergent with a mode convergence ;$
approximately equal to va+l0. Since the convergence behavior is primar- :ﬁf
ily due to the denominator terms of the modal contributions, modal con- ;%
vergence is only weakly dependent upon radial distance. An analytic .\‘
solution, Equation (5.24), was derived for branch line integral B, using e
Laplace’s method. Comparison with numerically generated data indicates \;
that Equation (5.24) is a good approximation whenever x>a. For each ‘?2
mode order, the residue of the real singularity was shown to represent a
wave that propagates axially and decays radially. Above the plate coin-
| cidence frequency, the total residue contribution behaves like an axial

standing wave that contributes little to the solution.
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Calculations of the acoustic nearfield were presented for =0 in :s;
x
PN 3
Figures 5.14-5.16 with @=0.1, 1, and 10 and in Figure 5.18 with @=100. ey
The nearfield was defined based upon practical size considerations of e
")
typical structures rather than on the basis of acoustic wavelength. f#
~
Since most structures of interest have a length-to-radius ratio of about ;.
ten and sensing equipment is generally found within one radius of the )
structure or else in the farfield, then a reasonable definition of the E}
nearfield would be x<10a and a<r<2a. Below the plate coincidence fre- _ Y
quency, good coupling between the drive point pressure and the acoustic
W
nearfield is seen to exist. This indicates that structural vibration E&
Y
could be an important component of the self noise of a sonar array at ;'
,:‘:,
these frequencies. If the reciprocal problem of an acoustic point
o
source near an elastic cylindrical shell is considered, these results N
4
indicate that large amounts of acoustic energy would couple intoc the \S
\J
structure and thus decrease the power radiated directly into the far- !
field. Above the plate coincidence frequency, the acoustic field is -~
‘H
"
similar to that of a point-excited plate and poor coupling is observed ﬁ.
=
between the drive point pressure and most of the acoustic nearfield. N
Both the surface pressure field and the shell radial displacement field ;3
*o)
were calculated for @=0.1, 1, 10, and 100. As expected, they display Eﬁ
e
similar behavior. Again strong coupling between the drive point and A,
points within 10a of the drive point is seen for frequencies below the ) :E‘
plate coincidence frequency. Above this frequency, the response is A
confined close to the drive point and resembles the response of a point- ' [%.
excited plate. o~
"
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APPENDIX 5
W
4
DERIVATION OF THE FLUGGE SHELL EQUATIONS '..ﬁ
BY APPLICATION OF HAMILTON'’S VARIATIONAL PRINCIPLE !
2
For a conservative mechanical system, Hamilton’s variational f}
. '_q
principle states that the motion of the system from time tl to time > :\
is such that the line integral i E\
L4
By
t 3
2 ol
J = J L dt (A.1) !‘
t )
1 Q:
0
has a stationary value for the correct path of motion. The functional L @
YO8
is the Lagrange functional, which represents the difference between the E:
)
kinetic and potential energies of the system at any instant. Of all the ;ie
-
possible paths by which the system could move, it will actually follow 7
o
the path by which the value of J is either a minimum, a maximum, or an -
o
inflection point. That is, the path will be such that the derivative of I
*
J with respect to some variable will be zero. In terms of variational >
calculus, Hamilton’s principle can be written as )
. R
8 = af Ldt =0 (A.2) v
B
Y
-
-
g
where § stands for "the variation of" and will be defined later. This ',
b
s
principle is a manifestation of the impulse-momentum theorem, and A
application of the principle results in equations commonly called the o
K ]
+
;ﬁ
™
_-l‘
-’
£
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Lagrange—-Euler, or simply, the Euler equations. They represent the
governing equations of motion for the system. They can also be indepen-
dently developed by using D’Alembert’s principle, which is based upon
the consideration of small virtual displacements from some instantaneous
state. The Lagrange functional L has been shown by Weinstock (1974) to
yield the conservation of energy law E=T+V when introduced into the
Euler equations. General reference is made to Weinstock, Morse and
Feshbach (1953), Goldstein (1981), and Sechler (1968) for material
developed in this appendix.

Development of Hamilton’s principle for a general problem can be
very concise, as in the case of Morse and Feshbach’s treatment, but at
the possible sacrifice of clarity. On the other hand, a more informa-
tive approach by examples, such as that presented by Weinstock, can
become very lengthy. Here, we will try to strike a middle ground by
developing the method based upon the kinetic energy term of the Lagrange
functional and then by developing the potential energy term in a more
concise manner with emphasis only upon points not adequately discussed
in the initial development. In general, we will be dealing with energy

densities, such that
) £
J-JJ'J'_[ LVdth-IJ Lg dS dt (A.3)
t, v t,S

is the integral to be made stationa.y, and L, is the Lagrange volume
density. Since the radial dependence of the problem is known, the prob-
lem can be reduced to a three-dimensional one in x, 6, and t by calcu-
lating the Lagrange surface density LS=TS-VS and the elemental volume

dV-rR3 de dx d6. The variable p represents a radial coordinate measured

from the shell’s middle surface that is related to the radial coordinate
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3

r by r=1+p. The R” factor is due to the normalization of r, p, and x

with respect to the middle-surface radius of the shell.
The instantaneous kinetic energy per unit volume at any point in

the shell is given by

ou Y2 du.)2 du Y2
1 2 r (] X
Ty = 3 ogR [(at ] * EﬁE ] + [5{ ] ] . (A.4)

In terms of the middle surface deformations, Equations (2.5), this is

S SRPCH (LY %2 L 2R2] s

.2 .o ..
+ W ~2p0uWw - 2rpVW L+ D W L+ pW
PUW x o, PN e T PV x

e

where the dot notation represents differentiation with respect to time,

and the differentiation notion

2
- Y =3y
Y,x 9xX and Y,ex 969X

has been introduced. Since u, v, and w are functions of x, 6, and t
only, the radial dependence of T, is known, and the surface kinetic

density can easily be calculated.

h/2 h/2
Tg=R[ T,rde =R [ (140) T, do
-h/2 -h/2
=3 oo [0+ ¥ 4 0P v (3P - aw g+ WP -2l + W) e

where the normalized thickness ratio 8 = h2/12 has been introduced.
If the potential energy of the system was zero, then the problem

would be to find u, v, and w for which

2 o« e e .
J = R I JJ LS(U'V'w'w,e’w,x) ds dt (A.7)
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3 K3 (] (] . * *
is stationary. Let us now introduce some comparision functions u , v,

and W which are close to the exact solutions and are defined by
u'(x,0,t,a) = u(x,0,t) + a &(x,6,t)
v'(x,0,t,a) = v(x,6,t) + a n(x,6,t) (A.8)
W (x,0,t,a) = w(x,6,t) + a {(x,6,t)
where « is a small non-dimensional constant. The perturbation functions
£, n, and I are restricted only in that they must be at least twice
differentiable in any variable x, 6, or t, and they must be zero at all
boundaries (including t, and tz). This last condition assures that the
boundary conditions yield the exact solutions. If we introduce the

comparison functions into Equation (A.7) and group terms according to

powers of the arbitrarily small constant «, we yield a new integral

= 1 2
J-J+aJl+2a J2 (A.9)

where
t2
3y = ogh® [ [ [tu-ee ge+ (v e -2 st
tls

+ B g = 208 o+ BV - ﬁ)t'x] ds dt (A.10)

is defined as the first variation integral, and

t
2
5 .2 2 .2 ‘s 2
3y = ek [ [[ [+ u3mn® + 22 - 4p 0l o+ 8 &y
tls
.2 .
+ 88 - 288 ] asat (A.11)




is called the second variational integral. Since « is an arbitrarily

T

small constant, this last term can be disgarded, and for a stationary b

1 condition

aJ
da

= §J = Jl = ( (A.IZ)

must be true, since the limits of integration are constant with respect
to a. This process serves to define the meaning of the variation of J.

The first variational integral contains terms of the form

t t

t 2 t2 -
j £(x,0,t)E dt = £ & | - %% £ dt (A.13)
Y SR

when integrated by parts. Since E(t2)=E(t1)-0 was a requirement on g,
the first term vanishes, leaving only the second term. Other terms

containing mixed derivatives also exist in the integrand of the form

t, 2n 2 t2 %2 on,

; Y- 3%f
J I £(x,8,£) o dodt = £ cI = Ik j I It Cdeat (A.14)
t, 0 0 £, b 0

after twice integrating by parts. Continuity of the solution in the
circumferential direction (or a free boundary condition in the axial
direction for derivatives with respect to x) eliminates the first term
on the right hand side, while the requirement C(tl)-C(tZ)-O eliminates
the second term, again leaving only the last term. The constant terms
which result from integration by parts that are not eliminated due to

forced constraints and continuity conditions will form the natural

boundary conditions of the system. Following this process the first

variational integral becomes

T |
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t2
3y == ek’ [ [[ [tu- e gE+ (v 380 - 200 mawe
t,S
$BU +2V =W o-u T asat . (A.15)

For the stationary condition to apply, J, must be zero. It is arqued

and proven by Weinstock that for arbitrary functions &, n, and {, the

only way Jy can be zero is if the functional coefficients of §, n, and ¢ !
are identically zero for all values of x, 6, and t within the range of

integration. This would yield a set of three differential equations

governing the behavior of the shell (if potential energy was neglected).
Examining the variation of the kinetic energy 8T, we f£ind many
terms which are proportional to B. These terms are related to rotary
inertia and are generally small except at high frequency. 1In keeping
with our earlier assumptions concerning zero-thickness shear strain,
which reduced the theory to a zero-order theory, this contribution will

be assumed negligible, leaving

)

ST = 3 = - pshRS j Jf (UE + Un + WC) ds dt . (A.16)

tls

Natural boundary conditions were not imposed deriving Equation (A-15).
Before considering the potential energy some comments are in
order. Relation (A.9) gives the appearance of a Taylor’s series expan-
sion about the exact solution in which the first variational integral Jl
acts as a first derivative, J2 acts as a second derivative, and higher
order derivatives are zero. This is the approach presented by Morse and

Feshbach. Wwhen forming the Taylor’s series expansion, it must be remem-
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bered that Ls is, in this case, a function not of u, v, and w, but of
the functions u, v, w, Q,e, and &,x which can be thought of as general-
ized coordinates e However, the Morse and Feshbach perturbation func-
tions Mo associated with these generalized coordinates are related to
the perturbation functions &, n, and  in the same way that the general-
ized coordinates are related to the functions u, v, and w. That is, the
perturbation function associated with w x Would be T .. The Taylor

’

series expansion would be

5
— * * * * * r a * * * * *
J(qquZ'Q3IQ4rqs) - J(qlan:Q3rq4lqs) + i 2& r&l‘l —a';; J(qqu2'q3'q4'q5)
m=1 oe=0

5
+ 7% LE;G " é—;]z J(qI,q;,q;,q;,q;) + higher order terms, (A.17)
1 aqm o=0
and &J would be the second term of the expansion with the « removed by
differentiation. Once those perturbation functions that are derivatives
of &, n, and t are removed by inteqration by parts, the resulting form
is often called the Euler equations. Often overlooked in the develop-
ment to this point is that the integration by parts may have introduced
natural boundary conditions upon the system.

Another point of note is that the stationary condition 8J=0 does
not necessarily quarantee a minimum. Often, it is obvious from the
problem at hand that the stationary point must be a minimum, such as for
the problem of the shortest distance between two points. However, this
is not always apparent. In such cases where doubt exists, the second
variational integral can be examined over the surface of stationarity in
much the same way the second derivative serves to determine whether a
point is a maximum, minimum, or inflection for a simple function. Such

techniques are extremely complex and beyond the scope of this work.
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The potential energy of the system arises from two sources. The )
first is from the instantaneous elastic strain associated with the ,
]
stress distribution in the shell of the deformed motion. This strain o
¢
energy density is defined as 3
:
l ]
UV =3 (exxcxx + €o9%0 * eex“ex) , (A.18) .
T
:
and the total strain energy of the shell would be given by bt
o
]
U=R [[f U, rdpdedx . (A.19) *
v )
45
ot
.
The factor of 1/2 in the strain energy density arises from the elastic ﬁ
by
relationship between stress and strain. Since the force on an elemental )
®
volume varies linearly from zero at some initial state to a value pro- »f
L
\J
portional to ¢ at some final state, the average force moving through '
N
)
some distance proportional to ¢ is o/2, and therefore, the strain energy r
is proporticnal to €¢/2. ?
(]
*
Another.source of potential energy is due to the applied loading on §
'I
the shell. For this problem, this includes the pressure loading on the A
1
shell given by pa(x,e,t) and the distributed driving forces denoted by ﬁ
X)
fd(x,e,t). The driving forces will be restricted to only radial forces, ﬁ
O
and therefore, the potential energy associated with P, and fd will arise e
]
due to the deformation w and be in the form of work, where T
We R[] (f5-p,) wdodx . (A.20) oo
a ’
S >
]
Forces which act in the direction of the displacement are considered to ]
A
do positive work. e

From Equation (2.10) relating stress and strain, the strain

energy density can be written as

4

-
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hoost.
¢
uv = ——E—z [six + ege + 2u €x€o0 * (1—55- ) egx] (A.21) XA
2(1-” ) y o
]
»
If the strains are expressed in terms of the membrane strains and the é§
curvature terms, as given by Equations (2.8) and (2.9), then the strain :'E:ﬁ
0
energy surface density Ug can be determined by integrating over the ::.1
thickness, yielding '
b
o
h/2 3
Ug =R [ (1+p) U, do N
~h2 -
W
= _E.hR_Z_ {[eix + ege * e o0+ (l%‘-’-) egx] (A.22) oy
2(1-u") \
¢
2 2 1oy, .2 2 ] |
+ B[Kxx - 2(exx +u eee)Kxx + 2u Kex¥og * Ko * ( 5 )(BKXG + Kex) } 143
»?'\
S
where terms of order greater than 8 have been neglected. The terms \"‘
: . . L »
proportional to 8 are due to bending of the shell, while the remaining ;
terms represent the strain energy due to the extension of the shell’s ;‘*
middle surface. ;
)
The membrane strains e and the nondimensional curvature terms « -
SN
are known functions of the middle-surface deformations u, v, and w and .':
their spatial derivatives. Hamilton’s variational principle may again .E
be applied to yield A
-
-
3 t2 ,i-‘
EhR b
su = EDB_ J'_[(ga+gn+gc)dedxdt (A.23)
2 u v \' 4
(1-47) {5
1 o
o
o
The term gu& represents a variation with respect to u, which is given by }:
]
- 1y >
(eyx * # €gg = B Kyyl& o + (FFh) Mg, + B Kg 18 o (A.24) b
.‘.:
|‘::«
!.‘
W,
»
..s
%)
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2 - o (dzey 2
Iu ™~ 3x [Bxx * ¥ Cgg = B Kyl = (557) 35 [ege + B Kl - (A.25)

The integration by parts yields constant terms that are identically zero

since by definition § must be zero at the boundaries x=+= and &=0,2n.

In a similar manner, the variation with respect to v is derived from

(%ﬂneex ~ 38 Kxe]“,x + [eee +ue.. - Bu Kxx]nle (A.26)

XX

or

- (i - e -
Iy = = (77 ax leax = 3B Kyol = gp [Bgg * 4 By = AU Kyl - (AL2T)

Again, integration by parts yields constant terms that are zero.
The variation with respect to the radial deformation w is not

quite as simple as the others and is derived from

[eee +ue .+ 8 Kee]c + B(-l-%ﬂ)[Kex + 3 Kxelc,ex

XX

+ u Kee -e. . -u eee]C . (A.28)

XX 1 XX

+ B[Kee + U Kxxlc,ee + Bk

From the above,

2
- 1y, 3
% = [Cgg * 4 By *+ B Kggl + BT 35z [Kex *+ 3 Kyg!

2 2
+ B %—7 [Kee + u Kxx] + B 2—5 [Kxx + U Kee e W eee] . (A.29)
5] ax

The constants associated with the inteqration by parts are identically

zero, zero due to continuity conditions at 6=0 and 2nr, or require that

: C’x(x=imrelt) =0

This condition is met for a free boundary condition,
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The work due to the applied forces and the acoustic pressure is j&
Y
dependent only upon the radial deformation w and has a variation bg
L
&
s = R I”(fd—pa) Z de dx dt . (A.30)
The total variation is therefore
» ”:
2 2 R
s3= [ [[rgaeaxar = [ [[(rg - ug+wg) doax dt = 0 (A.31)
t,s t,S iy
5
N
which for arbitrary &, n, and { can only be satisfied if the coeffi- o
®
cients of &, n, and T are each separately and identically zero. The Y

positive sign associated with the work of the external forces is due to
the general definition of potential energy for a conservative system.
This states that the difference in potential energy between a final and
initial state is equal to the negative of the work done by the forces on
the system when the system goes from the initial to the final state.
Positive work is defined as increasing the kinetic energy of the system.

These equations are given by

&2
c2
|%
RZ
g, + ;7 ¥ =0 (A.32)
P
r
c2
p

where the low frequency phase velocity of compressional waves in a plate




2o E

P (1-47)

and the normalized extensional rigidity of the shell

Eh
(1-42)

D=

have been introduced. By introducing the definitions of 9y Jyr and 9.
given by Equations (A.25), (A.27), and (A.29) along with the definitions
of the dimensionless curvatures given by Equation (2.9) and the membrane
strain Equations (2.8), the differential equations of motion governing

the shell can be written in terms of the middle surface displacements as

1y 14y l-u
U ¥ CFNBIU g0 + (FFWV o v+ BTV oo
g2
- Bk T ? u (A.33a)
p
'l—*“i) + (32 (1438)v + i w - B3z =2 v (a.33p)
2 ex 2 4 xx T V00T Y0 2 'Y, exx 2 .
p
1-p - _ a3z
”u,x + B( 2 )u,eex Bu,XXX + V,e B( 2 )v,exx + (1+B)W M ZBw,ee
R 1
P28 ooxx * P eee0 * P T T 7T (fg R o (A33C)
p
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